We performed temporal and thermal stability studies on SP3-07, a liquid-stabilized reference material for apolipoprotein (apo) B, selected during the previous phase of the International Federation of Clinical Chemistry project on standardization of apolipoprotein measurements. Results indicate that SP3-07 stored at -70 degrees C has the long-term stability required for a reference material. We assigned an accuracy-based apo B value of 1.22 g/L to SP3-07, using a nephelometric method that was calibrated with freshly isolated low-density lipoprotein for which the apo B mass value was determined by a standardized sodium dodecyl sulfate-Lowry procedure. Using a common protocol, the study participants transferred the assigned mass value from SP3-07 to the individual calibrators of the analytical systems and measured the apo B concentration of 20 fresh-frozen samples obtained from individual donors and covering a clinically relevant range of apo B values. The among-laboratory CV on these samples, analyzed by 25 analytical systems, ranged from 3.1% to 6.7%. These results demonstrate the lack of matrix effects of SP3-07 and its ability to provide accurate and comparable apo B values in a variety of immunochemical methods. On the basis of the outcome of these studies, the World Health Organization has endorsed SP3-07 as the International Reference Material for Apolipoprotein B.
Monocular absolute 3D fish pose estimation allows for efficient fish length measurement in the longline fisheries, where fishes are under severe deformation during the catching process. This task is challenging since it requires locating absolute 3D fish keypoints based on a short monocular video clip. Unlike related works, which either require expensive 3D ground-truth data and/or multiple-view images to provide depth information, or are limited to rigid objects, we propose a novel frame-based method to estimate the absolute 3D fish pose and fish length from a single-view 2D segmentation mask. We first introduce a relative 3D fish template. By minimizing an objective function, our method systematically estimates the relative 3D pose of the target fish and fish 2D keypoints in the image. Finally, with a closed-form solution, the relative 3D fish pose can help locate absolute 3D keypoints, resulting in the frame-based absolute fish length measurement, which is further refined based on the statistical temporal inference for the optimal fish length measurement from the video clip. Our experiments show that this method can accurately estimate the absolute 3D fish pose and further measure the absolute length, even outperforming the state-ofthe-art multi-view method.
Liquified natural gas (LNG) manipulator arms have been widely used in natural gas transportation. However, the automatic docking technology of LNG manipulator arms has not yet been realized. The first step of automatic docking is to identify and locate the target and estimate its pose. This work proposes a petroleum pipeline interface recognition and pose judgment method based on binocular stereo vision technology for the automatic docking of LNG manipulator arms. The proposed method has three main steps, including target detection, 3D information acquisition, and plane fitting. First, the target petroleum pipeline interface is segmented by using a color mask. Then, color space and Hu moment are used to obtain the pixel coordinates of the contour and center of the target petroleum pipeline interface. The semi-global block matching (SGBM) algorithm is used for stereo matching to obtain the depth information of an image. Finally, a plane fitting and center point estimation method based on a random sample consensus (RANSAC) algorithm is proposed. This work performs a measurement accuracy verification experiment to verify the accuracy of the proposed method. The experimental results show that the distance measurement error is not more than 1% and the angle measurement error is less than one degree. The measurement accuracy of the method meets the requirements of subsequent automatic docking, which proves the feasibility of the proposed method and provides data support for the subsequent automatic docking of manipulator arms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.