DNA methylation plays vital roles in various biological processes in both prokaryotes and eukaryotes. In bacteria, modification of adenine at N6 can protect bacterial DNA against cleavage by restriction enzymes, and bacterial DNA adenine methyltransferases are essential for bacterial virulence and viability. DNA adenine methyltransferase (DAM) targets the sequence of 5'-GATC-3' and can convert adenine into N(6)-methyladenine (m(6)A). Because mammals do not methylate DNA at adenine, bacterial DAM represents an excellent candidate for antibiotic development. Here, we developed an exonuclease III-aided target recycling strategy to sensitively assay activity of DAM. In this method, a hairpin probe labeled with a donor fluorophore (FAM) at the 5' end and a quencher (BHQ) close to the 3' end (FQ probe) was employed as reporter. Another hairpin substrate containing sequence of GATC was used as the methylation substrate of DAM. Once the hairpin substrate was methylated by DAM, it could be recognized and cleaved by Dpn I, which allows the release of a single-stranded oligodeoxynucleotide (ssODN). The ssODN can then hybridize to the 3' protruding terminus of FQ probe, which subsequently triggers the exonuclease III-mediated target recycling reaction and therefore can significantly improve the detection sensitivity of DAM. The exonuclease-mediated target recycling strategy is extremely sensitive and as low as 0.01 U/mL DAM can be distinctly determined. Using this developed method, we evaluated DAM activity in different growth stages of E. coli cells, and we also demonstrated that the assay has the potential to screen suitable inhibitor drugs for DAM for disease(s) treatment.
The recent discovery of reversible chemical modifications on mRNA has opened a new era of post-transcriptional gene regulation in eukaryotes. Among the 15 types of modifications identified in mRNA of eukaryotes, N7-methylguanosine (mG) is unique owing to its presence in the 5' cap structure. It remains unknown whether mG is also present internally in mRNA, and this is largely attributed to the lack of an appropriate analytical method to differentiate internal mG in mRNA from that in the 5' cap. To address this analytical challenge, we developed a novel strategy of combining differential enzymatic digestion with liquid chromatography-tandem mass spectrometry analysis to quantify the levels of these two types of mG modifications in mRNA. In particular, we found that S1 nuclease and phosphodiesterase I exhibit differential activities toward internal and 5'-terminal mG. By using this method, we found that internal mG was present in mRNA of cultured human cells as well as plants and rat tissue. In addition, our results showed that plants contain higher levels of internal mG in mRNA than mammals. We also observed that exposure of rice to cadmium (Cd) stimulated marked diminution in the levels of mG at both the 5' cap and internal positions of mRNA, which was correlated with the Cd-induced elevated expression of mG-decapping enzymes. Taken together, we reported here a strategy to distinguish internal and 5'-terminal mG in mRNA, and by using this method, we demonstrated the prevalence of internal mG modification in mRNA, which we believe will stimulate future functional studies of mG on post-transcriptional gene regulation in eukaryotes.
Some modified ribonucleosides in biological fluids have been evaluated as cancer-related metabolites. Detection of endogenous modified ribonucleosides in biological fluids may serve as a noninvasive cancers diagnostic method. However, determination of modified ribonucleosides is still challenging because of their low abundance and serious matrix interferences in biological fluids. Here, we developed a novel strategy for comprehensive profiling of ribose conjugates from biological fluids using metal oxide-based dispersive solid-phase extraction (DSPE) followed with in vitro stable isotope labeling and double neutral loss scan-mass spectrometry analysis (DSPE-SIL-LC-DNLS-MS). Cerium dioxide (CeO2) was used to selectively recognize and capture ribose conjugates from complex biological samples under basic environment. The enriched ribose conjugates were subsequently labeled with a pair of isotope labeling reagents (acetone and acetone-d6). The glucosidic bond of acetone labeled ribose conjugates is readily ruptured, and the generated ribose that carries an isotope tag can be lost as a neutral fragment under collision induced dissociation (CID). Since the light (acetone) and heavy (acetone-d6) labeled compounds have the same chemical structures and can generate different neutral loss fragments (NL 172 and 178 Da), it is therefore highly convenient to profile ribose conjugates by double neutral loss scan mode in mass spectrometry analysis. In this respect, the light and heavy labeled compounds were ionized at the same condition but recorded separately on MS spectra, which can significantly improve the detection specificity and facilitate the identification of ribose conjugates. Using the developed DSPE-SIL-LC-DNLS-MS strategy, we profiled the ribose conjugates in human urine, and 49 ribose conjugates were readily identified, among which 7 ribose conjugates exhibited significant contents change between healthy controls and lymphoma patients. The DSPE-SIL-LC-DNLS-MS strategy combines the selective enrichment, stable isotope labeling, and double neutral loss scan - MS analysis, which therefore can efficiently minimize false positive results, facilitate the relative quantification, and notably increase the numbers of identified ribose conjugates in biological fluids samples. Taken together, this study established a promising strategy for the effective profiling of urinary modified ribonucleosides, and simultaneous evaluation of the contents change of multiple modified ribonucleosides should provide more accurate and conclusive results for the use of urinary modified ribonucleosides as indicators of cancers.
5-Methylcytosine (5-mC), an important epigenetic modification involved in development, can be converted enzymatically to 5-hydroxymethylcytosine (5-hmC). 5-hmC is considered an intermediate of active DNA cytosine demethylation and makes itself serve as an epigenetic mark. 5-hmC content in most mammalian cells is low and the quantification of 5-hmC by liquid chromatography-mass spectrometry (LC-MS) frequently suffers from ion suppression by the presence of unmodified nucleosides. To circumvent this problem, we developed a method to selectively transfer a glucosyl group to the hydroxymethyl moiety of 5-hmC and form a more hydrophilic residue (β-glucosyl-5-hydroxymethyl-2'-deoxycytidine, 5-gmdC) by using T4 β-glucosyltransferase. The more hydrophilic 5-gmdC can be selectively enriched by using NH2-silica via hydrophilic interaction prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, which eliminates the ion suppression and significantly improves the detection sensitivity and accuracy. Using this method, we successfully quantified 5-hmC content in genomic DNA of three human cell lines and seven yeast strains. To the best of our knowledge, this is the first report about the existence of 5-hmC in the model organism of yeast. In addition, the contents of 5-hmC in two yeast strains of Schizosaccharomyces pombe are even higher than those of 5-mC, indicating that 5-hmC may play important roles on the physiological functions of yeast.
RNA contains a large number of modified nucleosides. In the metabolic re-exchange of RNA, modified nucleosides cannot be recycled and are thus excreted from cells into biological fluids. Determination of endogenous modified nucleosides in biological fluids may serve as non-invasive cancers diagnostic methods. Here we prepared boronate-affinity organic-silica hybrid capillary monolithic column (BOHCMC) that exhibited excellent selectivity toward the cis-diol-containing compounds. We then used the prepared BOHCMC as the on-line solid-phase microextraction (SPME) column and developed an on-line SPME-LC-MS/MS method to comprehensively profile cis-diol-containing nucleosides and ribosylated metabolites in human urine. Forty-five cis-diol-containing nucleosides and ribosylated metabolites were successfully identified in human urine. And five ribose conjugates, for the first time, were identified existence in human urine in the current study. Furthermore, the relative quantification suggested 4 cis-diol-containing compounds (5′-deoxy-5′-methylthioadensine, N4-acetylcytidine, 1-ribosyl-N-propionylhistamine and N2,N2,7-trimethylguanosine) increased more than 1.5 folds in all the 3 types of examined cancers (lung cancer, colorectal cancer, and nasopharyngeal cancer) compared to healthy controls. The on-line SPME-LC-MS/MS method demonstrates a promising method for the comprehensive profiling of cis-diol-containing ribose conjugates in human urines, which provides an efficient strategy for the identification and discovery of biomarkers and may be used for the screening of cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.