The folded mitochondria inner membrane-cristae is the structural foundation for oxidative phosphorylation (OXPHOS) and energy production. By mechanically simulating mitochondria morphogenesis, we speculate that efficient sculpting of the cristae is organelle non-autonomous. It has long been inferred that folding requires buckling in living systems. However, the tethering force for cristae formation and regulation has not been identified. Combining electron tomography, proteomics strategies, super resolution live cell imaging and mathematical modeling, we reveal that the mitochondria localized actin motor-myosin 19 (Myo19) is critical for maintaining cristae structure, by associating with the SAM-MICOS super complex. We discover that depletion of Myo19 or disruption of its motor activity leads to altered mitochondria membrane potential and decreased OXPHOS. We propose that Myo19 may act as a mechanical tether for effective ridging of the mitochondria cristae, thus sustaining the energy homeostasis essential for various cellular functions.
We used statistical methods to study the classification of high-potassium glass and lead–barium glass and analyzed the correlation between the chemical composition of different types of glass samples. We investigated the categorization methodology of glass cultural relics, conducted a principal component analysis on the chemical composition data of the glass, and developed a case-specific clustering algorithm (K-Means++) to further categorize the glass cultural relics. K-Means++ was developed to reduce the sensitivity of a traditional K-Means clustering algorithm, by choosing the next clustering center with probability inversely proportional to the distance from the current clustering center. Then we verified the validity of the six subcategories we defined by inertia and silhouette score and evaluated the sensitivity of the clustering algorithm. We obtained a robustness ratio that maintained over 0.9 in the random noise test and a silhouette score of 0.525 in the clustering, which illustrated significant divergence among different clusters and showed the result is reasonable. With our proposed algorithm and classification result, a more comprehensive understanding of glass relics can be gained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.