Aiming at the demand for rapid detection of highway pavement damage, many deep learning methods based on convolutional neural networks (CNNs) have been developed. However, CNN methods with raw image data require a high-performance hardware configuration and cost machine time. To reduce machine time and to apply the detection methods in common scenarios, the CNN structure with preprocessed image data needs to be simplified. In this work, a detection method based on a CNN and the combination of the grayscale and histogram of oriented gradients (HOG) features is proposed. First, the Gamma correction was employed to highlight the grayscale distribution of the damage area, which compresses the space of normal pavement. The preprocessed image was then divided into several unit cells, whose grayscale and HOG were calculated, respectively. The grayscale and HOG of each unit cell were combined to construct the grayscale-weighted HOG (GHOG) feature patterns. These feature patterns were input to the CNN with a specific structure and parameters. The trained indices suggested that the performance of the GHOG-based method was significantly improved, compared with the traditional HOG-based method. Furthermore, the GHOG-feature-based CNN technique exhibited flexibility and effectiveness under the same accuracy, in comparison to those deep learning techniques that directly deal with raw data. Since the grayscale has a definite physical meaning, the present detection method possesses a potential application for the further detection of damage details in the future.
Measuring temperature and moisture are important in many scenarios. It has been verified that temperature greatly affects the accuracy of moisture sensing. Moisture sensing performance would suffer without temperature calibrations. This paper introduces a nonlinearity compensation technique for temperature-dependent nonlinearity calibration of moisture sensors, which is based on an adaptive nonlinear order regulating model. An adaptive algorithm is designed to automatically find the optimal order number, which was subsequently applied in a nonlinear mathematical model to compensate for the temperature effects and improve the moisture measurement accuracy. The integrated temperature and moisture sensor with the proposed adaptive nonlinear order regulating nonlinearity compensation technique is found to be more effective and yield better sensing performance.
In this work, we propose a road pavement damage detection deep learning model based on feature points from a local minimum of grayscale. First, image blocks, consisting of the neighborhood of feature points, are cut from the image window to form an image block dataset. The image blocks are then input into a convolutional neural network (CNN) to train the model, extracting the image block features. In the testing process, the feature points as well as the image blocks are selected from a test image, and the trained CNN model can output the feature vectors for these feature image blocks. All the feature vectors will be combined to a composite feature vector as the feature descriptor of the test image. At last, the classifier of the model, constructed by a support vector machine (SVM), gives the classification as to whether the image window contains damaged areas or not. The experimental results suggest that the proposed pavement damage detection method based on feature-point image blocks and feature fusion is of high accuracy and efficiency. We believe that it has application potential in general road damage detection, and further investigation is desired in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.