BackgroundIdentifying viral sequences in mixed metagenomes containing both viral and host contigs is a critical first step in analyzing the viral component of samples. Current tools for distinguishing prokaryotic virus and host contigs primarily use gene-based similarity approaches. Such approaches can significantly limit results especially for short contigs that have few predicted proteins or lack proteins with similarity to previously known viruses.MethodsWe have developed VirFinder, the first k-mer frequency based, machine learning method for virus contig identification that entirely avoids gene-based similarity searches. VirFinder instead identifies viral sequences based on our empirical observation that viruses and hosts have discernibly different k-mer signatures. VirFinder’s performance in correctly identifying viral sequences was tested by training its machine learning model on sequences from host and viral genomes sequenced before 1 January 2014 and evaluating on sequences obtained after 1 January 2014.ResultsVirFinder had significantly better rates of identifying true viral contigs (true positive rates (TPRs)) than VirSorter, the current state-of-the-art gene-based virus classification tool, when evaluated with either contigs subsampled from complete genomes or assembled from a simulated human gut metagenome. For example, for contigs subsampled from complete genomes, VirFinder had 78-, 2.4-, and 1.8-fold higher TPRs than VirSorter for 1, 3, and 5 kb contigs, respectively, at the same false positive rates as VirSorter (0, 0.003, and 0.006, respectively), thus VirFinder works considerably better for small contigs than VirSorter. VirFinder furthermore identified several recently sequenced virus genomes (after 1 January 2014) that VirSorter did not and that have no nucleotide similarity to previously sequenced viruses, demonstrating VirFinder’s potential advantage in identifying novel viral sequences. Application of VirFinder to a set of human gut metagenomes from healthy and liver cirrhosis patients reveals higher viral diversity in healthy individuals than cirrhosis patients. We also identified contig bins containing crAssphage-like contigs with higher abundance in healthy patients and a putative Veillonella genus prophage associated with cirrhosis patients.ConclusionsThis innovative k-mer based tool complements gene-based approaches and will significantly improve prokaryotic viral sequence identification, especially for metagenomic-based studies of viral ecology.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-017-0283-5) contains supplementary material, which is available to authorized users.
The recent development of metagenomic sequencing makes it possible to sequence microbial genomes including viruses in an environmental sample. Identifying viral sequences from metagenomic data is critical for downstream virus analyses. The existing reference-based and gene homology-based methods are not efficient in identifying unknown viruses or short viral sequences. Here we have developed a reference-free and alignment-free machine learning method, DeepVirFinder, for predicting viral sequences in metagenomic data using deep learning techniques. DeepVirFinder was trained based on a large number of viral sequences discovered before May 2015. Evaluated on the sequences after that date, DeepVirFinder outperformed the state-of-the-art method VirFinder at all contig lengths. Enlarging the training data by adding millions of purified viral sequences from environmental metavirome samples significantly improves the accuracy for predicting underrepresented viruses. Applying DeepVirFinder to real human gut metagenomic samples from patients with colorectal carcinoma (CRC) identified 51,138 viral sequences belonging to 175 bins. Ten bins were associated with the cancer status, indicating their potential use for non-invasive diagnosis of CRC. In summary, DeepVirFinder greatly improved the precision and recall rates of viral identification, and it will significantly accelerate the discovery rate of viruses.
Viruses and their host genomes often share similar oligonucleotide frequency (ONF) patterns, which can be used to predict the host of a given virus by finding the host with the greatest ONF similarity. We comprehensively compared 11 ONF metrics using several k-mer lengths for predicting host taxonomy from among ∼32 000 prokaryotic genomes for 1427 virus isolate genomes whose true hosts are known. The background-subtracting measure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$d_2^*$\end{document} at k = 6 gave the highest host prediction accuracy (33%, genus level) with reasonable computational times. Requiring a maximum dissimilarity score for making predictions (thresholding) and taking the consensus of the 30 most similar hosts further improved accuracy. Using a previous dataset of 820 bacteriophage and 2699 bacterial genomes, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$d_2^*$\end{document} host prediction accuracies with thresholding and consensus methods (genus-level: 64%) exceeded previous Euclidian distance ONF (32%) or homology-based (22-62%) methods. When applied to metagenomically-assembled marine SUP05 viruses and the human gut virus crAssphage, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$d_2^*$\end{document}-based predictions overlapped (i.e. some same, some different) with the previously inferred hosts of these viruses. The extent of overlap improved when only using host genomes or metagenomic contigs from the same habitat or samples as the query viruses. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$d_2^*$\end{document} ONF method will greatly improve the characterization of novel, metagenomic viruses.
Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification 1 during the DNA replication phase of the cell cycle2. Here, we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication. Co-transcriptional RNAi releases RNA polymerase II (PolII), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes3 which spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.
Nuclear RNA interference is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3’ end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III. These Dcr1-terminated loci correspond to sites of replication stress and DNA damage, likely resulting from transcription-replication collisions. At the rDNA loci, release of Pol II facilitates DNA replication and prevents homologous recombination, which would otherwise lead to loss of rDNA repeats especially during meiosis. Our results reveal a novel role for Dcr1-mediated transcription termination in genome maintenance and may account for widespread regulation of genome stability by nuclear RNAi in higher eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.