Internet of Things (IoT) is becoming truly ubiquitous in our everyday life, but it also faces unique security challenges. Intrusion detection is critical for the security and safety of a wireless IoT network. This paper discusses the human-in-the-loop active learning approach for wireless intrusion detection. We first present the fundamental challenges against the design of a successful Intrusion Detection System (IDS) for wireless IoT network. We then briefly review the rudimentary concepts of active learning and propose its employment in the diverse applications of wireless intrusion detection. Experimental example is also presented to show the significant performance improvement of the active learning method over traditional supervised learning approach. While machine learning techniques have been widely employed for intrusion detection, the application of human-in-the-loop machine learning that leverages both machine and human intelligence to intrusion detection of IoT is still in its infancy. We hope this article can assist the readers in understanding the key concepts of active learning and spur further research in this area.Index Terms-Internet of things, intrusion detection, active learning, human-in-the-loop machine learning
This paper 1 presents a method to explain the knowledge encoded in a convolutional neural network (CNN) quantitatively and semantically. The analysis of the specific rationale of each prediction made by the CNN presents a key issue of understanding neural networks, but it is also of significant practical values in certain applications. In this study, we propose to distill knowledge from the CNN into an explainable additive model, so that we can use the explainable model to provide a quantitative explanation for the CNN prediction. We analyze the typical bias-interpreting problem of the explainable model and develop prior losses to guide the learning of the explainable additive model. Experimental results have demonstrated the effectiveness of our method.
This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of intermediate complexity. Such a phenomenon is widely shared by different DNNs for different tasks. This phenomenon indicates a cognition gap between DNNs and human beings, and we call it a representation bottleneck. We theoretically prove the underlying reason for the representation bottleneck. Furthermore, we propose a loss to encourage/penalize the learning of interactions of specific complexities, and analyze the representation capacities of interactions of different complexities.
This paper aims to formulate the problem of estimating the optimal baseline values for the Shapley value in game theory. The Shapley value measures the attribution of each input variable of a complex model, which is computed as the marginal benefit from the presence of this variable w.r.t. its absence under different contexts. To this end, people usually set the input variable to its baseline value to represent the absence of this variable (i.e. the no-signal state of this variable). Previous studies usually determine the baseline values in an empirical manner, which hurts the trustworthiness of the Shapley value. In this paper, we revisit the feature representation of a deep model from the perspective of game theory, and define the multi-variate interaction patterns of input variables to define the no-signal state of an input variable. Based on the multi-variate interaction, we learn the optimal baseline value of each input variable. Experimental results have demonstrated the effectiveness of our method.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.