To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression of PtME and its enzymatic activity in transgenic P. tricornutum. The total lipid content in transgenic cells markedly increased by 2.5-fold and reached a record 57.8% of dry cell weight with a similar growth rate to wild type, thus keeping a high biomass. The neutral lipid content was further increased by 31% under nitrogen-deprivation treatment, still 66% higher than that of wild type. Transgenic microalgae cells exhibited obvious morphological changes, as the cells were shorter and thicker and contained larger oil bodies. Immuno-electron microscopy targeted PtME to the mitochondrion. This study markedly increased the oil content in microalgae, suggesting a new route for developing ideal microalgal strains for industrial biodiesel production.
Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT) is a key enzyme that catalyzes the last step of triacylglyceride (TAG) biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.
SummaryPhosphorus is an important macronutrient. To understand the molecular and cellular responses to phosphorus stress better, transcriptome profiling in combination with biochemical investigations was conducted in the model diatom Phaeodactylum tricornutum. Out of 10 402 predicted genes, 2491 and 405 genes were significantly upregulated or downregulated respectively. Unsurprisingly, genes associated with phosphate uptake were upregulated, such as the phosphate transporters and alkaline phosphatases. Genes encoding stress-shock proteins were accordingly upregulated, including genes associated with stress-responsive proteins, signal transduction and secondary metabolism. Additionally, genes related to protein translation, carbon fixation, glycolysis and the citric acid cycle were also upregulated. Genes associated with gene transcription were downregulated, thereby resulting in the upregulation of translation to compensate for the limited supply of messenger RNA. The downregulation of genes related to β-oxidation could contribute to the accumulation of fatty acids. Accordingly, triacylglycerols, which are important for energy storage, were determined to increase by 1.65-fold. Intracellular membranes, other than chloroplast membranes, tended to be dispersed; this finding was in accordance with the increased transcription of a total of 11 genes encoding putative phospholipases. Taken together, this work revealed the coordination of multiple metabolic pathways and certain key genes in the adaptation of P. tricornutum to phosphorus stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.