To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression of PtME and its enzymatic activity in transgenic P. tricornutum. The total lipid content in transgenic cells markedly increased by 2.5-fold and reached a record 57.8% of dry cell weight with a similar growth rate to wild type, thus keeping a high biomass. The neutral lipid content was further increased by 31% under nitrogen-deprivation treatment, still 66% higher than that of wild type. Transgenic microalgae cells exhibited obvious morphological changes, as the cells were shorter and thicker and contained larger oil bodies. Immuno-electron microscopy targeted PtME to the mitochondrion. This study markedly increased the oil content in microalgae, suggesting a new route for developing ideal microalgal strains for industrial biodiesel production.
Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.
Robust surface warming with distinct interdecadal variations has been observed in the offshore area of China and adjacent seas (hereafter, offshore China) during winter and summer of the period 1958–2014. Acceleration of this warming during 1980–99 at rates greater than the global mean warming rate was accompanied by a weakening of the East Asian monsoon (EAM) and a strengthening of the west Pacific subtropical high (WPSH). It was determined that the sea surface temperature (SST) variation in offshore China correlates very well with changes in the EAM wind on interdecadal time scales. It was also established that the enhanced oceanic lateral heat transfer, mainly attributed to the leading empirical orthogonal function (EOF1), weakening EAM wind mode, has a central role in robust interdecadal winter surface warming in offshore China. However, except for the effect of oceanic lateral heat transfer, the increased surface heat flux through radiative heating related to the third EOF (EOF3) strengthening EAM anticyclone wind mode (WPSH) in summer appears to have a greater contribution to interdecadal summer surface warming in offshore China. These results help clarify the relationship between interdecadal SST variations, EAM, oceanic currents, and sea surface flux in offshore China.
Background: Microalgae are ideal raw materials for biodiesel and bioactive compounds. Glycerol-3-phosphate is formed from dihydroxyacetone phosphate (DHAP) through the glycolytic pathway catalyzed by glycerol-3-phosphate dehydrogenase (GPDH). Results: GPDH was characterized in the marine diatom Phaeodactylum tricornutum. In the GPDH-overexpressing P. tricornutum cells, the glycerol concentration per cell in the transformed diatom increased by 6.8-fold compared with the wild type, indicating that the overexpression of GPDH promoted the conversion of DHAP to glycerol-3-phosphate. There was a 60% increase in neutral lipid content, reaching 39.7% of dry cell weight in transgenic cells in the stationary phase, despite a 20% decrease in cell concentration. Fatty acid profiling showed that the levels of 16-and 18-carbon monounsaturated fatty acids significantly increased. Conclusion: GPDH had a significant impact on numerous metabolic processes in diatom cells, including the biosynthesis of glycerol and neutral lipids. These findings are instructive for the metabolic engineering of microalgae for biofuel production.
Geminiviruses are plant viruses with limited coding capacity. Geminivirus-encoded proteins are traditionally identified by applying a 10-kDa arbitrary threshold; however, it is increasingly clear that small proteins play relevant roles in biological systems, which calls for the reconsideration of this criterion. Here, we show that geminiviral genomes contain additional ORFs. Using tomato yellow leaf curl virus, we demonstrate that some of these small ORFs are expressed during the infection, and that the encoded proteins display specific subcellular localizations. We prove that the largest of these additional ORFs, which we name V3, is required for full viral infection, and that the V3 protein localizes in the Golgi apparatus and functions as an RNA silencing suppressor. These results imply that the repertoire of geminiviral proteins can be expanded, and that getting a comprehensive overview of the molecular plant-geminivirus interactions will require the detailed study of small ORFs so far neglected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.