SUMMARY The embryonic stem (ES) cell transcriptional and epigenetic networks are critical for the maintenance of ES cell self-renewal. However, it remains unclear whether components of these networks functionally interact and if so, what factors mediate such interactions. Here we show that WD-repeat protein-5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a novel regulator of ES cell self-renewal. We demonstrate that Wdr5, an ‘effector’ of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. We show that the Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators. Furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for maintenance of ES cell self-renewal and somatic cell reprogramming.
TGF-β signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-β mediator Smad4. We show that TGF-β induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-β sensitive PDA cells, EMT becomes lethal by converting TGF-β-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-β. TGF-β-induced Sox4 is thus geared to bolster progenitor identity, while simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-β tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.
Generation of reprogrammed induced pluripotent stem cells (iPSC) from patients with defined genetic disorders promises important avenues to understand the etiologies of complex diseases, and the development of novel therapeutic interventions. We have generated iPSC from patients with LEOPARD syndrome (LS; acronym of its main features: Lentigines, Electrocardiographic abnormalities, Ocular hypertelorism, Pulmonary valve stenosis, Abnormal genitalia, Retardation of growth and Deafness), an autosomal dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-MAPK signaling diseases, which also includes Noonan syndrome (NS), with pleiomorphic effects on several tissues and organ systems1,2. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSC have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LS-iPSC are larger, have a higher degree of sarcomeric organization and preferential localization of NFATc4 in the nucleus when compared to cardiomyocytes derived from human embryonic stem cells (HESC) or wild type (wt) iPSC derived from a healthy brother of one of the LS patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signaling pathways that may promote the disease phenotype.
Pluripotency of embryonic stem cells (ESCs) is defined by their ability to differentiate into three germ layers and derivative cell types1-3 and is established by an interactive network of proteins including OCT4 (also known as POU5F1; ref. 4), NANOG (refs 5,6), SOX2 (ref. 7) and their binding partners. The forkhead box O (FoxO) transcription factors are evolutionarily conserved regulators of longevity and stress response whose function is inhibited by AKT protein kinase. FoxO proteins are required for the maintenance of somatic and cancer stem cells8-13; however, their function in ESCs is unknown. We show that FOXO1 is essential for the maintenance of human ESC pluripotency, and that an orthologue of FOXO1 (Foxo1) exerts a similar function in mouse ESCs. This function is probably mediated through direct control by FOXO1 of OCT4 and SOX2 gene expression through occupation and activation of their respective promoters. Finally, AKT is not the predominant regulator of FOXO1 in human ESCs. Together these results indicate that FOXO1 is a component of the circuitry of human ESC pluripotency. These findings have critical implications for stem cell biology, development, longevity and reprogramming, with potentially important ramifications for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.