Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.
We have found three errors in our paper [1], and thus would like to make the following corrections to this paper:On page 302, in the second paragraph, line 12, "tenabiliby" should be changed to "tunability". On page 302, in the fourth paragraph, "In a typical cell, LC passing the cell, where d is the cell gap. When a sufficiently high voltage is applied to the indium tin oxide (ITO) electrodes, the LC directors will be reoriented material is sandwiched between two substrates coated with electrodes (e.g., indium tin oxide, ITO) and surface alignment layers (e.g., polyimide, PI) [53]" should be changed to "In a typical cell, LC material is sandwiched between two substrates coated with electrodes (e.g., indium tin oxide, ITO) and surface alignment layers (e.g., polyimide, PI) [53]".On page 303, in the first paragraph, "It will experience an optical path of L = dne after in vertical direction and the optical path becomes L = dno (Figure 1b)" should be changed to "It will experience an optical path of L = dne after passing the cell, where d is the cell gap. When a sufficiently high voltage is applied to the ITO electrodes, the LC directors will be reoriented in vertical direction and the optical path becomes L = dno (Figure 1b)." OPEN ACCESS
We have fabricated pentacene organic thin-film transistor (OTFT) driven active matrix organic light-emitting diode (OLED) displays on flexible polyethylene terephthalete substrates. These displays have 48×48 bottom-emission OLED pixels with two pentacene OTFTs used per pixel. Parylene is used to isolate the OTFTs and OLEDs with good OTFT yield and uniformity.
Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength–division–multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s−1), low-voltage (0.5 VPP) and efficient 0.9 fJ per bit error-free operation. This low-energy high-speed operation is enabled by a record electro-optic response, obtained in a vertical p–n junction device that at 250 pm V−1 (30 GHz V−1) is up to 10 times larger than prior demonstrations. In addition, this record electro-optic response is used to compensate for thermal drift over a 7.5 °C temperature range with little additional energy consumption (0.24 fJ per bit for a total energy consumption below 1.03 J per bit). The combined results of highly efficient modulation and electro-optic thermal compensation represent a new paradigm in modulator development and a major step towards single-digit femtojoule-class communications.
Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs -a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated. 289-296 (1992). 11. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, "Attosecond-resolution timing jitter characterization of free-running mode-locked lasers using balanced optical cross-correlation," Opt. Lett. microwave signals at 40-GHz with higher than 7-ENOB resolution," Opt. ©2012 Optical Society of America
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.