Microevolution and origins of Bradyrhizobium populations associated with soybeans at two field sites (A and B, 280 km apart in Canada) with contrasting histories of inoculation was investigated using probabilistic analyses of six core (housekeeping) gene sequences. These analyses supported division of 220 isolates in five lineages corresponding either to B. japonicum groups 1 and 1a or to one of three novel lineages within the genus Bradyrhizobium. None of the isolates from site A and about 20% from site B (the only site with a recent inoculation history) were attributed to inoculation sources. The data suggest that most isolates were of indigenous origin based on sequence analysis of 148 isolates of soybean-nodulating bacteria from native legumes (Amphicarpaea bracteata and Desmodium canadense). Isolates from D. canadense clustered with B. japonicum group 1, whereas those from A. bracteata were placed in two novel lineages encountered at soybean field sites. One of these novel lineages predominated at soybean sites and exhibited a significant clonal expansion likely reflecting selection by the plant host. Homologous recombination events detected in the 35 sequence types from soybean sites had an effect on genetic diversification that was approximately equal to mutation. Interlineage transfer of core genes was infrequent and mostly attributable to gyrB that had a history of frequent recombination. Symbiotic gene sequences (nodC and nifH) of isolates from soybean sites and native legumes clustered in two lineages corresponding to B. japonicum and B. elkani with the inheritance of these genes appearing predominantly by vertical transmission. The data suggest that soybean-nodulating bacteria associated with native legumes represent a novel source of ecologically adapted bacteria for soybean inoculation.
Summary
The black morel (Morchella importuna Kuo, O'Donnell and Volk) was once an uncultivable wild mushroom, until the development of exogenous nutrient bag (ENB), making its agricultural production quite feasible and stable. To date, how the nutritional acquisition of the morel mycelium is fulfilled to trigger its fruiting remains unknown. To investigate the mechanisms involved in ENB decomposition, the genome of a cultivable morel strain (M. importuna SCYDJ1‐A1) was sequenced and the genes coding for the decay apparatus were identified. Expression of the encoded carbohydrate‐active enzymes (CAZymes) was then analyzed by metatranscriptomics and metaproteomics in combination with biochemical assays. The results show that a diverse set of hydrolytic and redox CAZymes secreted by the morel mycelium is the main force driving the substrate decomposition. Plant polysaccharides such as starch and cellulose present in ENB substrate (wheat grains plus rice husks) were rapidly degraded, whereas triglycerides were accumulated initially and consumed later. ENB decomposition led to a rapid increase in the organic carbon content in the surface soil of the mushroom bed, which was thereafter consumed during morel fruiting. In contrast to the high carbon consumption, no significant acquisition of nitrogen was observed. Our findings contribute to an increasingly detailed portrait of molecular features triggering morel fruiting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.