Owning to the rapid development of computer technologies, an increasing number of relational data have been emerging in modern biomedical research. Many network-based learning methods have been proposed to perform analysis on such data, which provide people a deep understanding of topology and knowledge behind the biomedical networks and benefit a lot of applications for human healthcare. However, most network-based methods suffer from high computational and space cost. There remain challenges on handling high dimensionality and sparsity of the biomedical networks. The latest advances in network embedding technologies provide new effective paradigms to solve the network analysis problem. It converts network into a low-dimensional space while maximally preserves structural properties. In this way, downstream tasks such as link prediction and node classification can be done by traditional machine learning methods. In this survey, we conduct a comprehensive review of the literature on applying network embedding to advance the biomedical domain. We first briefly introduce the widely used network embedding models. After that, we carefully discuss how the network embedding approaches were performed on biomedical networks as well as how they accelerated the downstream tasks in biomedical science. Finally, we discuss challenges the existing network embedding applications in biomedical domains are faced with and suggest several promising future directions for a better improvement in human healthcare.
Summary:Refractory acute lymphoblastic leukemia (ALL) is often incurable, and relapse rates following allogeneic bone marrow transplantation (BMT) remain high. We have reported that patients who develop increased numbers of ␥␦ + T cells soon after BMT are significantly less likely to relapse. We now show in seven donor/recipient pairs that donor-derived V␦1 + CD4 − CD8 − ␥␦ + T cells are activated and proliferate in response to recipient primary ALL blasts. In addition, these cells have been shown to bind and lyse the recipient ALL blasts. Separately, ␥␦ + T cells proliferate poorly or not at all in mixed lymphocyte culture against HLA-mismatched unrelated stimulator cells. These observations suggest that allogeneic ␥␦ + T cells could be an effective immunotherapeutic strategy against refractory disease without the risk of graft-versus-host disease. Bone Marrow Transplantation (2001) 27, 601-606.
Programmed cell death protein-1 (PD-1) checkpoint immunotherapy efficacy remains unpredictable in glioblastoma (GBM) patients due to the genetic heterogeneity and immunosuppressive tumor microenvironments. Here, we report a microfluidics-based, patient-specific ‘GBM-on-a-Chip’ microphysiological system to dissect the heterogeneity of immunosuppressive tumor microenvironments and optimize anti-PD-1 immunotherapy for different GBM subtypes. Our clinical and experimental analyses demonstrated that molecularly distinct GBM subtypes have distinct epigenetic and immune signatures that may lead to different immunosuppressive mechanisms. The real-time analysis in GBM-on-a-Chip showed that mesenchymal GBM niche attracted low number of allogeneic CD154+CD8+ T-cells but abundant CD163+ tumor-associated macrophages (TAMs), and expressed elevated PD-1/PD-L1 immune checkpoints and TGF-β1, IL-10, and CSF-1 cytokines compared to proneural GBM. To enhance PD-1 inhibitor nivolumab efficacy, we co-administered a CSF-1R inhibitor BLZ945 to ablate CD163+ M2-TAMs and strengthened CD154+CD8+ T-cell functionality and GBM apoptosis on-chip. Our ex vivo patient-specific GBM-on-a-Chip provides an avenue for a personalized screening of immunotherapies for GBM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.