Even without formal training, humans experience a wide range of emotions in response to changes in musical features, such as tonality and rhythm, during music listening. While many studies have investigated how isolated elements of tonal and rhythmic properties are processed in the human brain, it remains unclear whether these findings with such controlled stimuli are generalizable to complex stimuli in the real world. In the current study, we present an analytical framework of a linearized encoding analysis based on a set of music information retrieval features to investigate the rapid cortical encoding of tonal and rhythmic hierarchies in natural music. We applied this framework to a public domain EEG dataset (OpenMIIR) to deconvolve overlapping EEG responses to various musical features in continuous music. In particular, the proposed framework investigated the EEG encoding of the following features: tonal stability, key clarity, beat, and meter. This analysis revealed a differential spatiotemporal neural encoding of beat and meter, but not of tonal stability and key clarity. The results demonstrate that this framework can uncover associations of ongoing brain activity with relevant musical features, which could be further extended to other relevant measures such as time-resolved emotional responses in future studies.
Local features play an important role in remote sensing image matching, and handcrafted features have been excessively used in this area for a long time. This article proposes a pyramid convolutional neural triplet network that extracts a 128-dimensional deep descriptor that significantly improves the matching performance. The proposed approach first extracts deep descriptors of the anchor patches and corresponding positive patches in a batch using the proposed pyramid convolutional neural network. Following this step, the approaches chooses the closest negative patch for each anchor patch and corresponding positive patch pair to form the triplet sample based on the descriptor distances among all other image patches in the batch. These triplets are used to optimize the parameters of the network using a new loss function. We evaluated the proposed deep descriptors on two benchmark data sets (Brown and HPatches) as well as real image data sets. The results reveal that the proposed descriptor achieves the state-of-the-art performance on the Brown data set and a comparatively very high performance on the HPatches data set. The proposed approach finds more correct matches than the classical handcrafted feature descriptors on aerial image pairs and is observed to be robust to variations in the viewpoint and illumination.
A fast remote sensing scene matching method, taking airports, oil depots, harbors and so on as research objects, is proposed in this article which is based on the SR saliency detection and frequency segmentation. Saliency detection is used to determine the candidate region where the target may exist to reduce the searching range effectively. And then, frequency segmentation is used to eliminate the frequency component except the frequency of the target to reduce the redundant information, thereby saving the computation of SIFT feature extraction and matching. A variety of experiments under different interference factors are carried out in this paper. Experimental results show that the fast matching algorithm proposed in this paper can not only maintain the validity of SIFT features under the condition of rotation, scale, illumination and viewpoint changes, but also shorten the matching time largely and improve the matching efficiency, laying the foundation for further practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.