Pulse diagnosis is an irreplaceable part of traditional Chinese medical science. However, application of the traditional pulse monitoring method was restricted in the modernization of Chinese medical science since it was difficult to capture real signals and integrate obscure feelings with a modern data platform. Herein, a novel multichannel pulse monitoring platform based on traditional Chinese medical science pulse theory and wearable electronics was proposed. The pulse sensing platform simultaneously detected pulse conditions at three pulse positions (Chi, Cun, and Guan). These signals were fitted to smooth surfaces to enable 3-dimensional pulse mapping, which vividly revealed the shape of the pulse length and width and compensated for the shortcomings of traditional single-point pulse sensors. Moreover, the pulse sensing system could measure the pulse signals from different individuals with different conditions and distinguish the differences in pulse signals. In addition, this system could provide full information on the temporal and spatial dimensions of a person’s pulse waveform, which is similar to the true feelings of doctors’ fingertips. This innovative, cost-effective, easily designed pulse monitoring platform based on flexible pressure sensor arrays may provide novel applications in modernization of Chinese medical science or intelligent health care.
In situ harvesting undersea energy is a vital method for undersea detector to realize its long‐term and real‐time undersea research. Herein, inspired by the fins with excellent hydrodynamic characteristic and the triboelectric nanogenerator (TENG) with the merits of light‐weight and high‐efficiency at low frequency, an energy harvesting device is designed to harvest undersea energy by bionic‐fin‐structure assisted with multilayer‐structured triboelectric nanogenerator (BFM‐TENG). The good design of geometry and structure enable BFM‐TENG to harvest energy efficiently by the driving of water‐flow from multidirections. Besides, based on the multiarea contact structure and ultrathin dielectric material, the BFM‐TENG could achieve a peak power density of 444 W m−3 under ideal test condition, which is about 1–2 orders of magnitude higher than that of previous work for harvesting wave energy. The findings not only provide a new in situ undersea energy harvesting method for undersea detectors to realize the real‐time, long‐term, and self‐powered undersea research, but also provide a potential strategy to achieve large‐scale undersea energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.