Normalize the response of electronic portal imaging device (EPID) is the first step toward an EPID‐based standardization of Linear Accelerator (linac) dosimetry quality assurance. In this study, we described an approach to generate two‐dimensional (2D) pixel sensitivity maps (PSM) for EPIDs response normalization utilizing an alternative beam and dark‐field (ABDF) image acquisition technique and large overlapping field irradiations. The automated image acquisition was performed by XML‐controlled machine operation and the PSM was generated based on a recursive calculation algorithm for Varian linacs equipped with aS1000 and aS1200 imager panels. Cross‐comparisons of normalized beam profiles and 1.5%/1.5 mm 1D Gamma analysis was adopted to quantify the improvement of beam profile matching before and after PSM corrections. PSMs were derived for both photon (6, 10, 15 MV) and electron (6, 20 MeV) beams via proposed method. The PSM‐corrected images reproduced a horn‐shaped profile for photon beams and a relative uniform profiles for electrons. For dosimetrically matched linacs equipped with aS1000 panels, PSM‐corrected images showed increased 1D‐Gamma passing rates for all energies, with an average 10.5% improvement for crossline and 37% for inline beam profiles. Similar improvements in the phantom study were observed with a maximum improvement of 32% for 15 MV and 22% for 20 MeV. The PSM value showed no significant change for all energies over a 3‐month period. In conclusion, the proposed approach correct EPID response for both aS1000 and aS1200 panels. This strategy enables the possibility to standardize linac dosimetry QA and to benchmark linac performance utilizing EPID as the common detector.
The radial profiles of perpendicular flows in the presence of the magnetic island were firstly measured in the HL-2A tokamak by hopping the work frequency of the Doppler backward scattering reflectometer system along with a two-dimensional electron cyclotron emission imaging diagnostic identifying the island locations. It has been observed that across the O-point cut the perpendicular flow is quite small at the center of the island and strongly enhanced around the boundary of the island, resulting in a large increase of the flow shear in the outer half island, while across the X-point cut the flow is almost flat in the whole island region. Meanwhile it was found that the density fluctuations are generally weakened inside the island. The results indicate that both the perpendicular flow and the density fluctuation level are modulated by the naturally rotating tearing mode near the island boundary. The cross-correlation between the perpendicular flows and the oscillating electron temperature further reveals that the modulation of the perpendicular flow occurs mainly inside and in the vicinity of the island.
A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (kρ ∼ 1-2, k ∼ 2-9 cm) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.
Since the last IAEA Fusion Energy Conference in 2018, significant progress of the experimental program of HL-2A has been achieved on developing advanced plasma physics, edge localized mode (ELM) control physics and technology. Optimization of plasma confinement has been performed. In particular, high-N H-mode plasmas exhibiting an internal transport barrier have been obtained (normalized plasma pressure N reached up to 3). Injection of impurity improved the plasma confinement. ELM control using resonance magnetic perturbation (RMP) or impurity injection has been achieved in a wide parameter regime, including Types I and III. In addition, the impurity seeding with supersonic molecular beam injection (SMBI) or laser blow-off (LBO) techniques has been successfully applied to actively control the plasma confinement and instabilities, as well as the plasma disruption with the aid of disruption prediction. Disruption prediction algorithms based on deep learning are developed. A prediction accuracy of 96.8% can be reached by assembling convolutional neural network (CNN). Furthermore, transport resulted from a wide variety of phenomena such as energetic particles and magnetic islands have been investigated. In parallel with the HL-2A experiments, the HL-2M mega-ampere class tokamak was commissioned in 2020 with its first plasma. Key features and capabilities of HL-2M are briefly presented.
Interactions among pedestal shear flows, turbulence, and the formation of the edge transport barrier have been studied in H-mode plasmas of the HL-2A tokamak by multi-channel Doppler reflectometry with high spatiotemporal resolution. Geodesic acoustic mode (GAM) has been observed during the L-I-H transition. It has been observed that the plasma transits into the I-phase when the mean E×B shear flow reaches a critical value. The bi-spectrum analysis has shown that there is a strong interaction between GAM and limit cycle oscillation (LCO), and the energy transfer is from GAM to LCO, suggesting that GAM can assist the L-I transition. The regulation of the edge turbulence by LCOs helps to build the steep pedestal and initialize the confinement improvement of the plasma. It has been found that the mean E×B shear flow is further increased just before the I-H transition, accompanied by the turbulence suppression, leading to the edge transport reduction and the pedestal formation. It has been demonstrated that the increase of the mean E×B shear flow prior to the L-I and I-H transitions is due to the ion diamagnetic component of Er. These results corroborate that the mean E×B shear flow plays a key role in the L-I and I-H transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.