This research proposes a new system for controlling yarn tension in the winding operation based on active disturbance-rejection control (ADRC) technology, which controls and minimizes the fluctuation of tension during winding. The mechanical structure of the winding machine was analyzed to clarify the main factors affecting the yarn tension. Proportional–integral–derivative (PID) control is the most common control method of the winding machine. In order to compare the control effects of ADRC and PID control, the mathematical model of the yarn-tension control system was established on the MATLAB platform by means of system identification. Through the simulation on this model, the results showed that under the action of disturbance, the overshoot of the yarn tension controlled by the active disturbance-rejection controller was smaller, the adjustment time was shorter, and the steady-state error was smaller. An experimental platform was built to test the control effect of the controller under different parameters, thereby verifying the performance and stability of the active disturbance-rejection controller. The results showed that the controller had good performance and stability.
A conical winding formation and tension control system was proposed in the doubling operation based on the yarn guide mode of a single spindle in this study. Conical winding formation realized the radial unwinding of wound package. An overfeed mechanism was introduced to achieve closed-loop control of yarn tension. The overfeed wheel was driven by a brushless Direct Current motor. The tension control system combined a Proportion Integration Differentiation controller with a radial-basis-function neural network, whose purpose was to meet the control requirements of the brushless DC motor. This system consisted of three main steps: Firstly, the radial-basis-function neural network was used to identify the system online. Secondly, the gradient descent method was used to adjust the node weight, center vector, and baseband width. Finally, incremental PID parameters online were adjusted according to the identified Jacobian information. A mathematical model of a control system was established in Matrix Laboratory. An experimental platform was designed for doubling winder to compare the control effects of Radial-basis-function-PID with traditional PID. The simulation results showed that the RBF-PID had a smaller overshoot of yarn tension, shorter adjustment time, and smaller steady-state error compared with the traditional PID controller in doubling operation by simulating the mathematical model. Experimental results showed the RBF-PID controller had good performance and stability and could be applied to yarns with different average linear velocity, yarn counts and strands . The yarn tension fluctuation will not exceed ±3% of the target value when the experimental materials and the cone angles are unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.