Background Gut integrity is compromised in abdominal sepsis with increased cellular apoptosis and altered barrier permeability. Intestinal epithelial cells (IEC) form a physiochemical barrier that separates the intestinal lumen from the host's internal milieu and is strongly involved in the mucosal inflammatory response and immune response. Recent research indicates the involvement of the stimulator of interferons genes (STING) pathway in uncontrolled inflammation and gut mucosal immune response. Methods We investigated the role of STING signaling in sepsis and intestinal barrier function using intestinal biopsies from human patients with abdominal sepsis and with an established model of abdominal sepsis in mice. Findings In human abdominal sepsis, STING expression was elevated in peripheral blood mononuclear cells and intestinal biopsies compared with healthy controls, and the degree of STING expression in the human intestinal lamina propria correlated with the intestinal inflammation in septic patients. Moreover, elevated STING expression was associated with high levels of serum intestinal fatty acid binding protein that served as a marker of enterocyte damage. In mice, the intestinal STING signaling pathway was markedly activated following the induction of sepsis induced by cecal ligation perforation (CLP). STING knockout mice showed an alleviated inflammatory response, attenuated gut permeability, and decreased bacterial translocation. Whereas mice treated with a STING agonist (DMXAA) following CLP developed greater intestinal apoptosis and a more severe systemic inflammatory response. We demonstrated that mitochondrial DNA (mtDNA) was released during sepsis, inducing the intestinal inflammatory response through activating the STING pathway. We finally investigated DNase I administration at 5 hours post CLP surgery, showing that it reduced systemic mtDNA and inflammatory cytokines levels, organ damage, and bacterial translocation, suggesting that inhibition of mtDNA-STING signaling pathway protects against CLP-induced intestinal barrier dysfunction. Interpretation Our results indicate that the STING signaling pathway can contribute to lethal sepsis by promoting IEC apoptosis and through disrupting the intestinal barrier. Our findings suggest that regulation of the mtDNA-STING pathway may be a promising therapeutic strategy to promote mucosal healing and protect the intestinal barrier in septic patients. Fund National Natural Science Foundation of China.
Disruption of the mucosal barrier following intestinal ischemia reperfusion (I/R) is life threatening in clinical practice. Mitochondrial dysfunction and oxidative stress significantly contribute to the early phase of I/R injury and amplify the inflammatory response. MitoQ is a mitochondrially targeted antioxidant that exerts protective effects following I/R injury. In the present study, we aimed to determine whether and how MitoQ protects intestinal epithelial cells (IECs) from I/R injury. In both in vivo and in vitro studies, we found that MitoQ pretreatment downregulated I/R-induced oxidative stress and stabilized the intestinal barrier, as evidenced by MitoQ-treated I/R mice exhibiting attenuated intestinal hyperpermeability, inflammatory response, epithelial apoptosis, and tight junction damage compared to controls. Mechanistically, I/R elevated mitochondrial 8-hydroxyguanine content, reduced mitochondrial DNA (mtDNA) copy number and mRNA transcription levels, and induced mitochondrial disruption in IECs. However, MitoQ pretreatment dramatically inhibited these deleterious effects. mtDNA depletion alone was sufficient to induce apoptosis and mitochondrial dysfunction of IECs. Mitochondrial transcription factor A (TFAM), a key activator of mitochondrial transcription, was significantly reduced during I/R injury, a phenomenon that was prevented by MitoQ treatment. Furthermore, we observed that thee protective properties of MitoQ were affected by upregulation of cellular antioxidant genes, including HO-1, NQO-1, and γ-GCLC. Transfection with Nrf2 siRNA in IECs exposed to hypoxia/reperfusion conditions partially blocked the effects of MitoQ on mtDNA damage and mitochondrial oxidative stress. In conclusion, our data suggest that MitoQ exerts protective effect on I/R-induced intestinal barrier dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.