SUMMARYMADS-box transcription factor AGL21 is responsive to several phytohormones as well as environmental cues and positively regulates auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. Therefore, AGL21 may be involved in various environmental and physiological signals-mediated lateral root development.
Summary
Nitrogen (N) is one of the key essential macronutrients that affects rice growth and yield. Inorganic N fertilizers are excessively used to boost yield and generate serious collateral environmental pollution. Therefore, improving crop N use efficiency (NUE) is highly desirable and has been a major endeavour in crop improvement. However, only a few regulators have been identified that can be used to improve NUE in rice to date. Here we show that the rice NIN‐like protein 4 (OsNLP4) significantly improves the rice NUE and yield. Field trials consistently showed that loss‐of‐OsNLP4 dramatically reduced yield and NUE compared with wild type under different N regimes. In contrast, the OsNLP4 overexpression lines remarkably increased yield by 30% and NUE by 47% under moderate N level compared with wild type. Transcriptomic analyses revealed that OsNLP4 orchestrates the expression of a majority of known N uptake, assimilation and signalling genes by directly binding to the nitrate‐responsive cis‐element in their promoters to regulate their expression. Moreover, overexpression of OsNLP4 can recover the phenotype of Arabidopsis nlp7 mutant and enhance its biomass. Our results demonstrate that OsNLP4 plays a pivotal role in rice NUE and sheds light on crop NUE improvement.
Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7–overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.
The work demonstrates the WVTR value of 3 dyads alternative 30 nm Al2O3 and 500 nm parylene C encapsulation structure is less than 10−5 g m−2 per day. And this TFE technology successfully applies for OLED device encapsulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.