The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
In this study, the authors first obtained the mitochondrial genome of Somanniathelphusa boyangensis. The results showed that the mitochondrial genome is 17,032bp in length, included 13 protein-coding genes, 2 rRNAs genes, 22 tRNAs genes and 1 putative control region, and it has the characteristics of the metazoan mitochondrial genome A+T bias. All tRNA genes display the typical clover-leaf secondary structure except tRNASer(AGN), which has lost the dihydroxyuridine arm. The GenBank database contains the mitochondrial genomes of representatives of approximately 22 families of Brachyura, comprising 56 species, including 4 species of freshwater crab. The authors established the phylogenetic relationships using the maximum likelihood and Bayesian inference methods. The phylogenetic relationship indicated that the molecular taxonomy of S. boyangensis is consistent with current morphological classification, and Parathelphusidae and Potamidae are derived within the freshwater clade or as part of it. In addition, the authors used the COX1 sequence of Somanniathelphusa in GenBank and the COX1 sequence of S. boyangensis to estimated the divergence time of this genus. The result displayed that the divergence time of Somanniathelphusa qiongshanensis is consistent with the separation of Hainan Island from mainland China in the Beibu Gulf, and the divergence time for Somanniathelphusa taiwanensis and Somanniathelphusa amoyensis is consistent with the separation of Taiwan Province from Mainland China at Fujian Province. These data indicate that geologic events influenced speciation of the genus Somanniathelphusa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.