Water-soluble quantum dots (qdots) are now being used in life sciences research to take advantage of their bright, easily excited fluorescence and high photostability. Although the frequent erratic blinking and substantial dark (never radiant) fractions that occur in all available qdots may interfere with many applications, these properties of individual particles in biological environments had not been fully evaluated. By labeling Qdot-streptavidin with organic dyes, we were able to distinguish individual dark and bright qdots and to observe blinking events as qdots freely diffused in aqueous solution. Bright fractions were measured by confocal fluorescence coincidence analysis (CFCA) and two-photon cross-correlation fluorescence correlation spectroscopy (FCS). The observed bright fractions of various preparations were proportional to the ensemble quantum yields (QYs), but the intrinsic brightness of individual qdots was found to be constant across samples with different QYs but the same emission wavelengths. Increasing qdots' illuminated dwell time by 10-fold during FCS did not change the fraction of apparently dark qdots but did increase the detected fraction of blinking qdots, suggesting that the dark population does not arise from millisecond blinking. Combining CFCA with wide-field imaging of arrays of qdots localized in dilute agarose gel, the blinking of qdots was measured across five orders of magnitude in time: Ϸ0.001-100 s. This research characterizes photophysical pathologies of qdots in biologically relevant environments rather than adhered on dielectric surfaces and describes methods that are useful for studying various bioapplicable nanoparticles.nanoparticles ͉ fluorescence ͉ correlation ͉ spectroscopy ͉ imaging S emiconducting quantum dots (qdots) have been shown to possess several photophysical properties that are superior to those of organic fluorophores: high-absorption cross sections, excellent photostability, broad excitation spectra, and narrow emission spectra (1, 2). Recent improvements in synthesis methods and protective coatings for water solubility make qdots promising fluorescent labels for certain life sciences research (3, 4). Indeed, qdots have been used successfully in a variety of biological experiments, such as long-term multicolor imaging (5), single-particle tracking in live cells (6), fluorescence in situ hybridization in human chromosomes (7), Xenopus embryo development imaging (8), multiphoton imaging in live mice (9, 10), cancer targeting and metastasis studies in vivo (11, 12), FRET-based biosensors (13), and multiplexed biocoding (14).Despite the advantages of qdots, many studies suggest considerable heterogeneity in their emission properties, including: blinking (i.e., fluorescence intermittency) (15), nonradiant or dark dot populations (16), emission spectrum variations (17), and fluorescence lifetime fluctuations (18). These attributes can limit the effectiveness of qdots for use as probes in biology. For example, in laser scanning microscopy and single-particle trac...
Direct observation of transcription factor action in the living cell nucleus can provide important insights into gene regulatory mechanisms. Live-cell imaging techniques have enabled the visualization of a variety of intranuclear activities, from chromosome dynamics to gene expression. However, progress in studying transcription regulation of specific native genes has been limited, primarily as a result of difficulties in resolving individual gene loci and in detecting the small number of protein molecules functioning within active transcription units. Here we report that multiphoton microscopy imaging of polytene nuclei in living Drosophila salivary glands allows real-time analysis of transcription factor recruitment and exchange on specific native genes. After heat shock, we have visualized the recruitment of RNA polymerase II (Pol II) to native hsp70 gene loci 87A and 87C in real time. We show that heat shock factor (HSF), the transcription activator of hsp70, is localized to the nucleus before heat shock and translocates from nucleoplasm to chromosomal loci after heat shock. Assays based on fluorescence recovery after photobleaching show a rapid exchange of HSF at chromosomal loci under non-heat-shock conditions but a very slow exchange after heat shock. However, this is not a consequence of a change of HSF diffusibility, as shown here directly by fluorescence correlation spectroscopy. Our results provide strong evidence that activated HSF is stably bound to DNA in vivo and that turnover or disassembly of transcription activator is not required for rounds of hsp70 transcription. This and previous studies indicate that transcription activators display diverse dynamic behaviours in their associations with targeted loci in living cells. Our method can be applied to study the dynamics of many factors involved in transcription and RNA processing, and in their regulation at native heat shock genes in vivo.
Several eukaryotic transcription factors have been shown to modulate the elongation rate of RNA polymerase II (Pol II) on naked or chromatin-reconstituted templates in vitro. However, none of the tested factors have been shown to directly affect the elongation rate of Pol II in vivo. We performed a directed RNAi knock-down (KD) screen targeting 141 candidate transcription factors and identified multiple factors, including Spt6, that alter the induced Hsp70 transcript levels in Drosophila S2 cells. Spt6 is known to interact with both nucleosome structure and Pol II, and it has properties consistent with having a role in elongation. Here, ChIP assays of the first wave of Pol II after heat shock in S2 cells show that KD of Spt6 reduces the rate of Pol II elongation. Also, fluorescence recovery after photobleaching assays of GFP-Pol II in salivary gland cells show that this Spt6-dependent effect on elongation rate persists during steady-state-induced transcription, reducing the elongation rate from approximately 1100 to 500 bp/min. Furthermore, RNAi depletion of Spt6 reveals its broad requirement during different stages of development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.