Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. Results: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. Conclusions: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1expression is associated with poor overall survival in patients with breast cancer.
Tumor metastasis involves a series of biological steps during which the tumor cells acquire the ability to invade surrounding tissues and survive outside the original tumor site. During the early stages, the cancer cells undergo an epithelial-mesenchymal transition (EMT). Wnt/β-catenin signaling is known to drive EMT and metastasis. Here we report that Wnt/β-catenin signaling is hyperactivated in metastatic breast cancer cells that express microRNA 374a (miR-374a). In breast cancer cell lines, ectopic overexpression of miR-374a promoted EMT and metastasis both in vitro and in vivo. Furthermore, miR-374a directly targeted and suppressed multiple negative regulators of the Wnt/β-catenin signaling cascade, including WIF1, PTEN, and WNT5A. Notably, miR-374a was markedly upregulated in primary tumor samples from patients with distant metastases and was associated with poor metastasis-free survival. These results demonstrate that miR-374a maintains constitutively activated Wnt/β-catenin signaling and may represent a therapeutic target for early metastatic breast cancer.
The popular recreational drug, (±)3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) is a potent and selective brain serotonin (5-HT) neurotoxin in animals. MDMA-induced 5-HT neurotoxicity can be demonstrated using a variety of neurochemical, neuroanatomical and, more recently, functional measures of 5-HT neurons. Although the neurotoxic effects of MDMA in animals are widely accepted, the relevance of the animal data to human MDMA users has been questioned, largely because dosages of drugs used in animals are perceived as being much higher than those used by humans. In the present paper, we review the extensive body of data demonstrating that MDMA produced toxic effects on brain 5-HT neurons in animals and present new data indicating that levels of the type 2 vesicular monoamine transporter are reduced in MDMA-treated animals, providing further indication of MDMA’s 5-HT neurotoxic potential. Further, we demonstrate, using principles of interspecies scaling, that dosages of MDMA known to be neurotoxic in animals fall squarely in the range of dosages used typically by recreational MDMA users.
Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.