Abstract. The main advancements of the Beijing Climate Center (BCC) climate system model from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to phase 6 (CMIP6) are presented, in terms of physical parameterizations and model performance. BCC-CSM1.1 and BCC-CSM1.1m are the two models involved in CMIP5, whereas BCC-CSM2-MR, BCC-CSM2-HR, and BCC-ESM1.0 are the three models configured for CMIP6. Historical simulations from 1851 to 2014 from BCC-CSM2-MR (CMIP6) and from 1851 to 2005 from BCC-CSM1.1m (CMIP5) are used for models assessment. The evaluation matrices include the following: (a) the energy budget at top-of-atmosphere; (b) surface air temperature, precipitation, and atmospheric circulation for the global and East Asia regions; (c) the sea surface temperature (SST) in the tropical Pacific; (d) sea-ice extent and thickness and Atlantic Meridional Overturning Circulation (AMOC); and (e) climate variations at different timescales, such as the global warming trend in the 20th century, the stratospheric quasi-biennial oscillation (QBO), the Madden–Julian Oscillation (MJO), and the diurnal cycle of precipitation. Compared with BCC-CSM1.1m, BCC-CSM2-MR shows significant improvements in many aspects including the tropospheric air temperature and circulation at global and regional scales in East Asia and climate variability at different timescales, such as the QBO, the MJO, the diurnal cycle of precipitation, interannual variations of SST in the equatorial Pacific, and the long-term trend of surface air temperature.
Abstract. Poor air quality is currently responsible for large impacts on human health across the world. In addition, the air pollutants ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5) are also radiatively active in the atmosphere and can influence Earth's climate. It is important to understand the effect of air quality and climate mitigation measures over the historical period and in different future scenarios to ascertain any impacts from air pollutants on both climate and human health. The Coupled Model Intercomparison Project Phase 6 (CMIP6) presents an opportunity to analyse the change in air pollutants simulated by the current generation of climate and Earth system models that include a representation of chemistry and aerosols (particulate matter). The shared socio-economic pathways (SSPs) used within CMIP6 encompass a wide range of trajectories in precursor emissions and climate change, allowing for an improved analysis of future changes to air pollutants. Firstly, we conduct an evaluation of the available CMIP6 models against surface observations of O3 and PM2.5. CMIP6 models consistently overestimate observed surface O3 concentrations across most regions and in most seasons by up to 16 ppb, with a large diversity in simulated values over Northern Hemisphere continental regions. Conversely, observed surface PM2.5 concentrations are consistently underestimated in CMIP6 models by up to 10 µg m−3, particularly for the Northern Hemisphere winter months, with the largest model diversity near natural emission source regions. The biases in CMIP6 models when compared to observations of O3 and PM2.5 are similar to those found in previous studies. Over the historical period (1850–2014) large increases in both surface O3 and PM2.5 are simulated by the CMIP6 models across all regions, particularly over the mid to late 20th century, when anthropogenic emissions increase markedly. Large regional historical changes are simulated for both pollutants across East and South Asia with an annual mean increase of up to 40 ppb for O3 and 12 µg m−3 for PM2.5. In future scenarios containing strong air quality and climate mitigation measures (ssp126), annual mean concentrations of air pollutants are substantially reduced across all regions by up to 15 ppb for O3 and 12 µg m−3 for PM2.5. However, for scenarios that encompass weak action on mitigating climate and reducing air pollutant emissions (ssp370), annual mean increases in both surface O3 (up 10 ppb) and PM2.5 (up to 8 µg m−3) are simulated across most regions, although, for regions like North America and Europe small reductions in PM2.5 are simulated due to the regional reduction in precursor emissions in this scenario. A comparison of simulated regional changes in both surface O3 and PM2.5 from individual CMIP6 models highlights important regional differences due to the simulated interaction of aerosols, chemistry, climate and natural emission sources within models. The projection of regional air pollutant concentrations from the latest climate and Earth system models used within CMIP6 shows that the particular future trajectory of climate and air quality mitigation measures could have important consequences for regional air quality, human health and near-term climate. Differences between individual models emphasise the importance of understanding how future Earth system feedbacks influence natural emission sources, e.g. response of biogenic emissions under climate change.
Abstract. Quantification and attribution of long-term tropospheric ozone trends are critical for understanding the impact of human activity and climate change on atmospheric chemistry but are also challenged by the limited coverage of long-term ozone observations in the free troposphere where ozone has higher production efficiency and radiative potential compared to that at the surface. In this study, we examine observed tropospheric ozone trends, their attributions, and radiative impacts from 1995–2017 using aircraft observations from the In-service Aircraft for a Global Observing System database (IAGOS), ozonesondes, and a multi-decadal GEOS-Chem chemical model simulation. IAGOS observations above 11 regions in the Northern Hemisphere and 19 of 27 global ozonesonde sites have measured increases in tropospheric ozone (950–250 hPa) by 2.7 ± 1.7 and 1.9 ± 1.7 ppbv per decade on average, respectively, with particularly large increases in the lower troposphere (950–800 hPa) above East Asia, the Persian Gulf, India, northern South America, the Gulf of Guinea, and Malaysia/Indonesia by 2.8 to 10.6 ppbv per decade. The GEOS-Chem simulation driven by reanalysis meteorological fields and the most up-to-date year-specific anthropogenic emission inventory reproduces the overall pattern of observed tropospheric ozone trends, including the large ozone increases over the tropics of 2.1–2.9 ppbv per decade and above East Asia of 0.5–1.8 ppbv per decade and the weak tropospheric ozone trends above North America, Europe, and high latitudes in both hemispheres, but trends are underestimated compared to observations. GEOS-Chem estimates an increasing trend of 0.4 Tg yr−1 of the tropospheric ozone burden in 1995–2017. We suggest that uncertainties in the anthropogenic emission inventory in the early years of the simulation (e.g., 1995–1999) over developing regions may contribute to GEOS-Chem's underestimation of tropospheric ozone trends. GEOS-Chem sensitivity simulations show that changes in global anthropogenic emission patterns, including the equatorward redistribution of surface emissions and the rapid increases in aircraft emissions, are the dominant factors contributing to tropospheric ozone trends by 0.5 Tg yr−1. In particular, we highlight the disproportionately large, but previously underappreciated, contribution of aircraft emissions to tropospheric ozone trends by 0.3 Tg yr−1, mainly due to aircraft emitting NOx in the mid-troposphere and upper troposphere where ozone production efficiency is high. Decreases in lower-stratospheric ozone and the stratosphere–troposphere flux in 1995–2017 contribute to an ozone decrease at mid-latitudes and high latitudes. We estimate the change in tropospheric ozone radiative impacts from 1995–1999 to 2013–2017 is +18.5 mW m−2, with 43.5 mW m−2 contributed by anthropogenic emission changes (20.5 mW m−2 alone by aircraft emissions), highlighting that the equatorward redistribution of emissions to areas with strong convection and the increase in aircraft emissions are effective for increasing tropospheric ozone's greenhouse effect.
Abstract. The Beijing Climate Center Earth System Model version 1 (BCC-ESM1) is the first version of a fully coupled Earth system model with interactive atmospheric chemistry and aerosols developed by the Beijing Climate Center, China Meteorological Administration. Major aerosol species (including sulfate, organic carbon, black carbon, dust, and sea salt) and greenhouse gases are interactively simulated with a whole panoply of processes controlling emission, transport, gas-phase chemical reactions, secondary aerosol formation, gravitational settling, dry deposition, and wet scavenging by clouds and precipitation. Effects of aerosols on radiation, cloud, and precipitation are fully treated. The performance of BCC-ESM1 in simulating aerosols and their optical properties is comprehensively evaluated as required by the Aerosol Chemistry Model Intercomparison Project (AerChemMIP), covering the preindustrial mean state and time evolution from 1850 to 2014. The simulated aerosols from BCC-ESM1 are quite coherent with Coupled Model Intercomparison Project Phase 5 (CMIP5)-recommended data, in situ measurements from surface networks (such as IMPROVE in the US and EMEP in Europe), and aircraft observations. A comparison of modeled aerosol optical depth (AOD) at 550 nm with satellite observations retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) and surface AOD observations from the AErosol RObotic NETwork (AERONET) shows reasonable agreement between simulated and observed AOD. However, BCC-ESM1 shows weaker upward transport of aerosols from the surface to the middle and upper troposphere, likely reflecting the deficiency of representing deep convective transport of chemical species in BCC-ESM1. With an overall good agreement between BCC-ESM1 simulated and observed aerosol properties, it demonstrates a success of the implementation of interactive aerosol and atmospheric chemistry in BCC-ESM1.
Abstract. The Earth system models (ESMs) that participated in the sixth Coupled Model Intercomparison Project (CMIP6) tend to simulate excessive cooling in surface air temperature (TAS) between 1960 and 1990. The anomalous cooling is pronounced over the Northern Hemisphere (NH) midlatitudes, coinciding with the rapid growth of anthropogenic sulfur dioxide (SO2) emissions, the primary precursor of atmospheric sulfate aerosols. Structural uncertainties between ESMs have a larger impact on the anomalous cooling than internal variability. Historical simulations with and without anthropogenic aerosol emissions indicate that the anomalous cooling in the ESMs is attributed to the higher aerosol burden in these models. The aerosol forcing sensitivity, estimated as the outgoing shortwave radiation (OSR) response to aerosol concentration changes, cannot well explain the diversity of pothole cooling (PHC) biases in the ESMs. The relative contributions to aerosol forcing sensitivity from aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs) can be estimated from CMIP6 simulations. We show that even when the aerosol forcing sensitivity is similar between ESMs, the relative contributions of ARI and ACI may be substantially different. The ACI accounts for between 64 % and 87 % of the aerosol forcing sensitivity in the models and is the main source of the aerosol forcing sensitivity differences between the ESMs. The ACI can be further decomposed into a cloud-amount term (which depends linearly on cloud fraction) and a cloud-albedo term (which is independent of cloud fraction, to the first order), with the cloud-amount term accounting for most of the inter-model differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.