The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.
In this paper, we propose new operator-splitting algorithms for the total variation regularized infimal convolution (TV-IC) model [6] in order to remove mixed Poisson-Gaussian (MPG) noise. In the existing splitting algorithm for TV-IC, an inner loop by Newton method had to be adopted for one nonlinear optimization subproblem, which increased the computation cost per outer loop. By introducing a new bilinear constraint and applying the alternating direction method of multipliers (ADMM), all subproblems of the proposed algorithms named as BCA (short for Bilinear Constraint based ADMM algorithm) and BCA f (short for a variant of BCA with f ully splitting form) can be very efficiently solved. Especially for the proposed BCA f , they can be calculated without any inner iterations. The convergence of the proposed algorithms are investigated, where particularly, a Huber type TV regularizer is adopted to guarantee the convergence of BCA f. Numerically, compared to existing primal-dual algorithms for the TV-IC model, the proposed algorithms, with fewer tunable parameters, converge much faster and produce comparable results meanwhile.
Windshear is a kind of microscale meteorological phenomenon which can cause danger to the landing and takeoff of aircrafts. Accurate windshear detection plays a crucial role in aviation safety. With the development of machine learning, several learning-based methods are proposed for windshear detection, i.e., windshear and non-windshear classification. To obtain accurate detection results, it is significant to extract features that can distinguish windshear and non-windshear properly from the obtained wind velocity data. In this paper, we mainly introduce two statistical indicators derived from the Doppler Light Detection and Ranging (LiDAR) observational wind velocity data by plan position illustrate (PPI) scans for windshear features construction. Besides the indicators directly derived from the wind velocity data, we also study the visual information from the corresponding conical images of wind velocity. Based on the proposed indicators, we construct three feature vectors for windshear and non-windshear classification. Inspired by the idea of multiple instance learning, the wind velocity data collected in the 4 minutes within the reported time spot are considered in the procedure of feature vector construction, which can reduce the possibility of windshear features missing. Both statistical methods and clustering methods are applied to evaluate the effectiveness of the proposed feature vectors. Numerical results show that the proposed feature vectors have good effect on windshear and non-windshear classification and can be used to provide more accurate windshear alerting to pilots in practice.
In this article, we propose a light detection and ranging (LiDAR) data denoising scheme for wind profile observation as a part of quality control procedure for wind velocity monitoring and windshear detection. The proposed denoising scheme consists of several components. (i) It selects LiDAR observations according to their SNR values so that serious noisy data can be removed. (ii) A polar-based total variation smoothing term is employed to regularize LiDAR observations. (iii) The regularization parameters are automatically determined to balance the data-fitting term and the total variation smoothing term. Numerical results for LiDAR data collected at the Hong Kong International Airport are reported to demonstrate that the denoising performance of the proposed method is better than that of the testing LiDAR data denoising schemes in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.