Zinc dialkyldithiophosphate additives are used to control wear and inhibit oxidation in almost all engine oils as well as many other types of lubricant. They limit wear primarily by forming a thick, protective, phosphate glass-based tribofilm on rubbing surfaces. This film formation can occur at low temperatures and is relatively indifferent to the chemical nature of the substrate. There has been considerable debate as to what drives ZDDP tribofilm formation, why it occurs only on surfaces that experience sliding and whether film formation is controlled primarily by temperature, pressure, triboemission or some other factor. This paper describes a novel approach to the problem by studying the formation of ZDDP films in full film EHD conditions from two lubricants having very different EHD friction properties. This shows that ZDDP film formation does not require solid-solid rubbing contact but is driven simply by applied shear stress, in accord with a stress-promoted thermal activation model. The shear stress present in a high-pressure contact can reduce the thermal activation energy for ZDDP by at least half, greatly increasing the reaction rate. This mechanism explains the origins of many practically important features of ZDDP films; their topography, their thickness and the conditions under which they form. The insights that this study provides should prove valuable both in optimising ZDDP structure and in modelling ZDDP antiwear behaviour. The findings also highlight the importance of mechanochemistry to the behaviour of lubricant additives in general.
Zinc dialkyldithiophosphate (ZDDP) is added to engine lubricants to reduce wear and ensure reliable operation. ZDDP reacts under rubbing conditions to form protective zinc/iron phosphate tribofilms on steel surfaces. Recently, it has been demonstrated that this process can be promoted by applied stresses in lubricated contacts, as well as temperature, and is thus mechanochemical in origin. In this study, a tribology test rig capable of applying very high loads has been developed to generate ZDDP tribofilms under full-film elastohydrodynamic lubrication (EHL) conditions in steel/steel ball-on-disk contacts. This provides a well-defined temperature and stress environment with negligible direct asperity contact in which to study mechanochemical processes. ZDDPs with branched primary and secondary alkyl substituents have been studied in three base oils, two with high EHL friction and one with low EHL friction. In the high EHL friction base oils, the tribofilm growth rate increases exponentially with shear stress and temperature for both ZDDPs, as predicted by a stress augmented thermal activation model. Conversely, under otherwise identical conditions, negligible ZDDP tribofilm formation takes place in the low EHL friction base oil. This confirms that the ZDDP reaction is driven by macroscopic shear stress rather than hydrostatic pressure. The secondary ZDDP forms tribofilms considerably faster than the primary ZDDP under equivalent conditions, suggesting that the initial decomposition reaction is the rate determining step for tribofilm formation. The rate of tribofilm growth is independent of ZDDP concentration over the range studied, indicating that this process follows zero-order kinetics. Under full-film EHL conditions, ZDDP tribofilm formation is promoted by macroscopic shear stress applied through the base oil molecules, which induces asymmetric stress on adsorbed ZDDP molecules to promote their decomposition and initiate rapid phosphate polymerisation.
There is currently considerable debate concerning the most appropriate rheological model to describe the behaviour of lubricant films in rolling-sliding, elastohydrodynamic contacts. This is an important issue since an accurate model is required in to predict friction in such contacts. This paper reviews the origins of this debate, which primarily concerns a divergence of views between researchers using high pressure, high shear rate viscometry and those concerned with the measurement and analysis of elastohydrodynamic friction; the former advocate a Carreau-based shear stress/strain rate model while the latter generally favour an Eyring-based one. The crucial importance of accounting for shear heating effects in analysing both viscometric and friction data is discussed. The main criticisms levied by advocates of a Carreau-based model against Eyring's model are discussed in some detail. Finally the ability of both types of rheological model to fit elastohydrodynamic friction measurements for a quite simple, well-defined base fluid is tested, using previously-measured pressure-viscosity behaviour for the fluid. Both models appear to fit the experimental data over a wide temperature range quite well, though fit of the Eyring model appears slightly closer than that of the Carreau-Yasuda model. Friction data from a wider range of welldefined fluid types is needed to identify categorically the most appropriate model to describe elastohydrodynamic friction.
The EHD friction properties of a wide range of base fluids have been measured and compared in mixed sliding-rolling conditions at three temperatures and two pressures. The use of tungsten carbide ball and disc specimens enabled high mean contact pressures of 1.5 and 2.0 GPa to be obtained, comparable to those present in many rolling bearings. The measurements confirm the importance of molecular structure of the base fluid in determining EHD friction. Liquids having linear-shaped molecules with flexible bonds give considerably lower friction than liquids based on molecules with bulky side groups or rings. EHD friction also increases with viscosity for liquids having similar molecular structures. Using pure ester fluids, it is shown that quite small differences in molecular structure can have considerable effects on EHD friction. The importance of temperature rise in reducing EHD friction at slide-roll ratios above about 5% has been shown. By measuring EHD friction at several temperatures and pressures as well as EHD film thickness, approximate corrections to measured EHD friction data have been made to obtain isothermal shear stress and thus EHD friction curves. These show that under the conditions tested most low molecular weight base fluids do not reach a limiting friction coefficient and thus shear stress. However, two high traction base fluids appear to reach limiting values, while three linear polymeric base fluids may also do so. Constants of best fit to a linear/logarithmic isothermal shear stress/strain rate relationship have been provided to enable reconstruction of isothermal EHD friction behaviour for most of the fluids tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.