As the computing resources and the battery capacity of mobile devices are usually limited, it is a feasible solution to offload the computation-intensive tasks generated by mobile devices to edge servers in mobile edge computing (MEC). In this paper, we study the multi-user multi-server task offloading problem in mobile edge computing systems, where all the users compete for the limited communication resources and computing resources. We formulate the offloading problem with the goal of minimizing the cost of the users and maximizing the profits of the edge servers. We propose a hierarchical Economic and Efficient Task Offloading and Resource Purchasing (EETORP) framework that includes a two-stage joint optimization process. Then, we prove that the problem is NP-complete. For the first stage, we formulate the offloading problem as a multi-channel access game (MCA-Game) and prove theoretically the existence of at least one Nash equilibrium strategy in the MCA-Game. Next, we propose a game-based multi-channel access (GMCA) algorithm to obtain the Nash equilibrium strategy and analyze the performance guarantee of the obtained offloading strategy in the worst case. For the second stage, we model the computing resource allocation between the users and edge servers by Stackelberg game theory, and reformulate the problem as a resource pricing and purchasing game (PAP-Game). We prove theoretically the property of incentive compatibility and the existence of Stackelberg equilibrium. A game-based pricing and purchasing (GPAP) algorithm is proposed. Finally, a series of both parameter experiments and comparison experiments are carried out, which validate the convergence and effectiveness of the GMCA and GPAP algorithms.
Dialogue sentiment analysis is a hot topic in the field of artificial intelligence in recent years, in which the construction of multimodal corpus is the key part of dialogue sentiment analysis. With the rapid development of the Internet of Things (IoT), it provides a new means to collect the multiparty dialogues to construct a multimodal corpus. The rapid development of Mobile Edge Computing (MEC) provides a new platform for the construction of multimodal corpus. In this paper, we construct a multimodal corpus on MEC servers to make full use of the storage space distributed at the edge of the network according to the procedure of constructing a multimodal corpus that we propose. At the same time, we build a deep learning model (sentiment analysis model) and use the constructed corpus to train the deep learning model for sentiment on MEC servers to make full use of the computing power distributed at the edge of the network. We carry out experiments based on real-world dataset collected by IoT devices, and the results validate the effectiveness of our sentiment analysis model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.