Conjugated polydiacetylene (PDA)/silica nanocomposites with tunable mesostructures and reversible thermochromatism were synthesized through self-directed assembly of diacetylenic silanes. In contrast to the previous studies, where the PDA side chains interacted weakly through noncovalent interactions, the side chains in the present nanocomposites are covalently connected to the inorganic silica frameworks, providing control over the molecular alignment, stability, and electronic properties. Furthermore, tuning the molecular architecture (e.g., the shape and side-chain length) allows control over the mesostructure (e.g., cubic and lamellar) and chromatic response of the nanocomposites (from irreversible to partially reversible and then to completely reversible). As a result of the covalent interactions, the nanocomposites also demonstrate higher reversible chromatic transition temperatures. This work not only provides responsive robust chromatic materials toward practically reusable PDA sensors but also is of great fundamental value for the design of supramolecular assembly and the understanding of the chromatic mechanism of PDA.
Responsive PMO materials have been synthesized through co-assembly of bridged diacetylenic silsesquioxane and surfactant. The spatially defined polydiacetylenic component, mesoporous network, and the covalent proximity of polydiacetylene to silica endow the PMO with mechanical robustness, reversible chromatic responses, improved thermal stability, and faster responses to chemical stimuli. This research also provides an efficient molecular design and assembly paradigm to fabricate a family of conjugated optoelectronic materials, creating novel platforms for sensors, actuators, and other device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.