Background: Disruptive behavior in autism spectrum disorder (ASD) is an important clinical problem, but its neural basis remains poorly understood. The current research aims to better understand the neural underpinnings of disruptive behavior in ASD, while addressing whether the neural basis is shared with or separable from that of core ASD symptoms. Methods: Participants consisted of 48 male children and adolescents: 31 ASD (7 had high disruptive behavior) and 17 typically developing (TD) controls, well-matched on sex, age, and IQ. For ASD participants, autism symptom severity, disruptive behavior, anxiety symptoms, and ADHD symptoms were measured. All participants were scanned while viewing biological motion (BIO) and scrambled motion (SCR). Two fMRI contrasts were analyzed: social perception (BIO > SCR) and Default Mode Network (DMN) deactivation (fixation > BIO). Age and IQ were included as covariates of no interest in all analyses. Results: First, the between-group analyses on BIO > SCR showed that ASD is characterized by hypoactivation in the social perception circuitry, and ASD with high or low disruptive behavior exhibited similar patterns of hypoactivation. Second, the between-group analyses on fixation > BIO showed that ASD with high disruptive behavior exhibited more restricted and less DMN deactivation, when compared to ASD with low disruptive behavior or TD. Third, the within-ASD analyses showed that (a) autism symptom severity (but not disruptive behavior) was uniquely associated with less activation in the social perception regions including the posterior superior temporal sulcus and inferior frontal gyrus; (b) disruptive behavior (but not autism symptom severity) was uniquely associated with less DMN deactivation in the medial prefrontal cortex (MPFC) and lateral parietal cortex; and (c) anxiety symptoms mediated the link between disruptive behavior and less DMN deactivation in both anterior cingulate cortex (ACC) and MPFC, while ADHD symptoms mediated the link primarily in ACC. Conclusions: In boys with ASD, disruptive behavior has a neural basis in reduced DMN deactivation, which is distinct and separable from that of core ASD symptoms, with the latter characterized by hypoactivation in the social perception circuitry. These differential neurobiological markers may potentially serve as neural targets or predictors for interventions when treating disruptive behavior vs. core symptoms in ASD.
Previous studies using diffusion tensor imaging (DTI) to investigate white matter (WM) structural connectivity have suggested widespread, although inconsistent WM alterations in autism spectrum disorder (ASD), such as greater reductions in fractional anisotropy (FA). However, findings may lack generalizability because: (a) most have focused solely on the ASD male brain phenotype, and not sex‐differences in WM integrity; (b) many lack stringent and transparent data quality control such as controlling for head motion in analysis. This study addressed both issues by using Tract‐Based Spatial Statistics (TBSS) to separately compare WM differences in 81 ASD (56 male, 25 female; 4–21 years old) and 39 typically developing (TD; 23 males, 16 females; 5–18 years old) children and young people, carefully group‐matched on sex, age, cognitive abilities, and head motion. ASD males and females were also matched on autism symptom severity. Two independent‐raters completed a multistep scan quality assurance to remove images that were significantly distorted by motion artifacts before analysis. ASD females exhibited significant widespread reductions in FA compared to TD females, suggesting altered WM integrity. In contrast, no significant localized or widespread WM differences were found between ASD and TD males. This study highlights the importance of data quality control in DTI, and outlines important sex‐differences in WM alterations in ASD females. Future studies can explore the extent to which neural structural differences might underlie sex‐differences in ASD behavioral phenotype, and guide clinical interventions to be tailored toward the unique needs of ASD females and males. Autism Res 2019, 12: 1472–1483. © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc.Lay SummaryPrevious Diffusion Tensor Imaging (DTI) studies have found atypical brain structural connectivity in males with autism, although findings are inconclusive in females with autism. To investigate potential sex‐differences, we studied males and females with and without autism who showed a similar level of head movement during their brain scan. We found that females with autism had widespread atypical neural connectivity than females without autism, although not in males, highlighting sex‐differences.
Parenting children with ASD has a complex history. Given parents’ increasingly pivotal role in children’s treatment, it is critical to consider parental style and behaviours. This study (1) compares parenting style of parents of children with ASD, parents of children with anxiety disorders, and parents of typically developing (TD) children and (2) investigates contributors to parenting style within and between groups. Parents of children with anxiety had a distinct parenting style compared to ASD and TD parents. Unique relationships between child symptoms and parenting behaviours emerged across the three groups. Understanding factors that impact parenting between and within clinical groups can guide the development of interventions better tailored to support the needs of parents, particularly parents of children with ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.