Currently, RuO 2 is a benchmark acidic oxygen evolution reaction (OER) catalyst. Nevertheless, its wide applications are always restricted by slow dynamics and limited durability. This paper reports a type of Mn-doped RuO 2 nanocrystals for boosting the OER catalytic performance in acidic media. The catalyst (named Mn-RuO 2 ) is prepared through annealing of Ru-exchanged Mn-based derivative at 300 °C. Such Mn-RuO 2 exhibits excellent acidic OER activity, with an overpotential of 158 mV at 10 mA cm −2 and a stability of 5000 cycles in the presence of sulfuric acid (0.5 mol/L). Both structural characterization and theoretical analysis show that the Mn doping in RuO 2 can tune the d-band center of Ru active sites and lower antibonding surface-adsorbate states, which leads to a decreased free energy of the rate-determining step, ultimately enhancing the intrinsic activity of RuO 2 .
The shuttling behavior and sluggish conversion kinetics of intermediate lithium polysulfides (LiPS) represent the main obstacles to the practical application of lithium–sulfur batteries (LSBs). Herein, an innovative sulfur host is proposed, based on an iodine‐doped bismuth selenide (I‐Bi2Se3), able to solve these limitations by immobilizing the LiPS and catalytically activating the redox conversion at the cathode. The synthesis of I‐Bi2Se3 nanosheets is detailed here and their morphology, crystal structure, and composition are thoroughly. Density‐functional theory and experimental tools are used to demonstrate that I‐Bi2Se3 nanosheets are characterized by a proper composition and micro‐ and nano‐structure to facilitate Li+ diffusion and fast electron transportation, and to provide numerous surface sites with strong LiPS adsorbability and extraordinary catalytic activity. Overall, I‐Bi2Se3/S electrodes exhibit outstanding initial capacities up to 1500 mAh g−1 at 0.1 C and cycling stability over 1000 cycles, with an average capacity decay rate of only 0.012% per cycle at 1 C. Besides, at a sulfur loading of 5.2 mg cm−2, a high areal capacity of 5.70 mAh cm−2 at 0.1 C is obtained with an electrolyte/sulfur ratio of 12 µL mg−1. This work demonstrated that doping is an effective way to optimize the metal selenide catalysts in LSBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.