The scalable production of hydrogen could conveniently be realized by alkaline water electrolysis. Currently, the major challenge confronting hydrogen evolution reaction (HER) is lacking inexpensive alternatives to platinum-based electrocatalysts. Here we report a high-efficient and stable electrocatalyst composed of ruthenium and cobalt bimetallic nanoalloy encapsulated in nitrogen-doped graphene layers. The catalysts display remarkable performance with low overpotentials of only 28 and 218 mV at 10 and 100 mA cm−2, respectively, and excellent stability of 10,000 cycles. Ruthenium is the cheapest platinum-group metal and its amount in the catalyst is only 3.58 wt.%, showing the catalyst high activity at a very competitive price. Density functional theory calculations reveal that the introduction of ruthenium atoms into cobalt core can improve the efficiency of electron transfer from alloy core to graphene shell, beneficial for enhancing carbon–hydrogen bond, thereby lowing ΔGH* of HER.
Currently, RuO 2 is a benchmark acidic oxygen evolution reaction (OER) catalyst. Nevertheless, its wide applications are always restricted by slow dynamics and limited durability. This paper reports a type of Mn-doped RuO 2 nanocrystals for boosting the OER catalytic performance in acidic media. The catalyst (named Mn-RuO 2 ) is prepared through annealing of Ru-exchanged Mn-based derivative at 300 °C. Such Mn-RuO 2 exhibits excellent acidic OER activity, with an overpotential of 158 mV at 10 mA cm −2 and a stability of 5000 cycles in the presence of sulfuric acid (0.5 mol/L). Both structural characterization and theoretical analysis show that the Mn doping in RuO 2 can tune the d-band center of Ru active sites and lower antibonding surface-adsorbate states, which leads to a decreased free energy of the rate-determining step, ultimately enhancing the intrinsic activity of RuO 2 .
Demonstrated here is the correlation between atomic configuration induced electronic density of single‐atom Co active sites and oxygen reduction reaction (ORR) performance by combining density‐functional theory (DFT) calculations and electrochemical analysis. Guided by DFT calculations, a MOF‐derived Co single‐atom catalyst with the optimal Co1‐N3PS active moiety incorporated in a hollow carbon polyhedron (Co1‐N3PS/HC) was designed and synthesized. Co1‐N3PS/HC exhibits outstanding alkaline ORR activity with a half‐wave potential of 0.920 V and superior ORR kinetics with record‐level kinetic current density and an ultralow Tafel slope of 31 mV dec−1, exceeding that of Pt/C and almost all non‐precious ORR electrocatalysts. In acidic media the ORR kinetics of Co1‐N3PS/HC still surpasses that of Pt/C. This work offers atomic‐level insight into the relationship between electronic density of the active site and catalytic properties, promoting rational design of efficient catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.