Although a previous study reported that propofol had a therapeutic effect in status epilepticus (SE), the mechanisms underlying the effect of propofol in SE remain unclear. The aim of this study was to explore the regulatory mechanisms underlying propofol-induced inhibition of SE.A rat SE model was established using the lithium-pilocarpine injection method. A qRT-PCR and Western blot were utilized to detect the expression of relative molecules. Cell apoptosis was evaluated by a flow cytometry assay. The interaction between miR-15a-5p and NR2B was assessed using a luciferase reporter assay.Propofol inhibited cell apoptosis and increased miR-15a-5p expression both in hippocampal tissues of SE rats and low Mg 2+ -induced hippocampal neurons. Propofol-induced attenuation of apoptosis of low Mg 2+ -induced hippocampal neurons was mediated by miR-15a-5p. miR-15a-5p targeted NR2B and negatively regulated its expression. Propofol downregulated NR2B expression, mediated by miR-15a-5p. In terms of the mechanism of action, propofol suppressed the apoptosis of Mg 2+ -induced hippocampal neurons through the miR-15a-5p/NR2B/ERK1/2 pathway. In vivo experiment suggested that propofol inhibited the apoptosis of hippocampal neurons in SE rats by upregulating miR-15a-5p.In terms of the molecular mechanism of propofol, it appears to inhibit apoptosis of hippocampal neurons in SE through the miR-15a-5p/NR2B/ERK1/2 pathway. The findings provide theoretical support for propofol treatment of SE.
BackgroundThe aim of this study is to investigate the role of intraoperative MR imaging in temporal lobe low-grade glioma (LGG) surgery and to report the surgical outcome in our series with regard to seizures, neurological defects, and quality of life.MethodsPatients with temporal lobe contrast-nonenhancing gliomas who presented with seizures in the course of their disease were enrolled in our prospective study. We non-randomly assigned patients to undergo intraoperative magnetic resonance imaging (iMRI)-guided surgery or conventional surgery. Extent of resection (EOR) and surgical outcomes were compared between the two groups.ResultsForty-one patients were allocated in the iMRI group, and 14 were in the conventional group. Comparable EOR was achieved for the two groups (p = 0.634) although preoperative tumor volumes were significantly larger for the iMRI group. Seizure outcome tended to be better for the iMRI group (Engel class I achieved for 89.7 % (35/39) vs 75 % (9/12)) although this difference was not statistically different. Newly developed neurological deficits were observed in four patients (10.3 %) and two patients (16.7 %), respectively (p = 0.928). Free of seizures and neurological morbidity led to a return-to-work or return-to-school rate of 84.6 % (33/39) vs 75 % (9/12), respectively (p = 0.741).ConclusionsOur study provided evidence that iMRI was a safe and useful tool in temporal lobe LGG surgery. Optimal extent of resection contributed to favorable seizure outcome in our series with low morbidity rate, which led to a high return-to-work rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.