Accurate counting is difficult in the case of large numbers of overlapping and adhering fry. In this study, we propose a lightweight target detection counting method based on deep learning methods that can meet the deployment requirements of edge computing device for automatic fry counting while obtaining a high counting accuracy. We improve the structure of YOLOv4-tiny by embedding different attention mechanisms in the CSP blocks of the backbone network to enhance the feature extraction performance. In addition, the low efficiency of feature fusion in the original model is also addressed by adding different attention mechanisms to the neck network structure to promote the effective fusion of deep feature information with shallow feature information and improve the counting accuracy. The experimental results showed that the six models proposed in this study improved the model accuracy and recall to varying degrees compared with the original YOLOv4-tiny model, while retaining the advantages of the YOLOv4-tiny model in terms of its small number of parameters and fast inference rate. It was also shown that the CBAM(n)-YOLOv4-tiny model obtained by adding the CBAM to the neck network showed the most significant improvement, with an mean average precision (mAP) of 94.45% and a recall of 93.93%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.