The population structure of Phytophthora infestans in China was studied and three mitochondrial haplotypes (Ia, IIa, IIb) were observed. Genetic analysis with 10 highly informative SSR markers identified 68 different genotypes, including three dominant clonal lineages. In the Chinese P. infestans population, the genotypes were strongly clustered according to their geographic origin. One of dominant clonal lineages was genetically similar to Blue_13, a dominant clonal lineage found in Europe since 2004. This is the first report of Blue_13 outside Europe. Only one mating type (A1) was found in the northern and southeastern provinces, but in southern and northwestern China both mating types were observed. The mating type ratio and SSR allele frequencies indicate that in China the sexual cycle of P. infestans is rare. These results emphasize that the migration of asexual propagules and the generation of subclonal variation are the dominant driving factors of the population structure of P. infestans in China. They may also have implications for the role of monitoring P. infestans populations in potato late blight management strategies in China.
Abstract. Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortality worldwide, particularly in China. MicroRNAs (miRs) serve important roles in the pathogenesis of HCC. The present study investigated the function of miR-1271 in HCC. The miR-1271 levels were analyzed by quantitative reverse transcription polymerase chain reaction. Cells growth was examined by MTT assay. Bioinformatics algorithms from TargetScanHuman were used to predict the target genes of miR-1271. The protein level was assayed by western blotting. miR-1271 demonstrated a lower expression level in HCC tissues. Upregulation of miR-1271 suppressed the growth of HepG-2 and Huh-7 cells and induced apoptosis of cells. Forkhead box Q1 (FOXQ1) was targeted by miR-1271. In conclusion, miR-1271 is a novel tumor suppressor that inhibits HCC proliferation and induces cellular apoptosis by targeting FOXQ1 in HCC. The results of the present study may provide a novel therapeutic target of HCC. IntroductionHepatocellular carcinoma (HCC) accounts for ~80% of all liver cancer cases, and is one of the most common causes of cancer-associated mortality worldwide (1,2). The prevalence rate of HCC in China is particularly high, but continues to increase in numerous western countries (1,3). Despite HCC being was one of the first cancers to be linked epidemiologically to a definite risk factor, the underlying mechanisms of HCC pathogenesis remain unclear (4). The risk factors for HCC vary by location. In China, Hepatitis B or Hepatitis C virus infections are the main risk factors (5). The survival rate of patients with HCC has been extended due to progress in liver transplantation and other treatments; however, the insensitivity of chemotherapeutic drugs, cancer recurrence and metastasis continue to contribute to a poor prognosis (6). Thus, the identification of therapeutic targets and translation of molecular studies of HCC into clinical practice is urgently required.MicroRNAs (miRNAs) are a class of small non-coding RNAs, which are ~22 nucleotides in length (7-9). A number of miRNAs have been revealed to be involved in the pathogenesis of HCC (10-26). The roles of miR-1271 in numerous types of cancers have previously been investigated. For example, in gastric cancer, miR-1271 inhibited cell proliferation, invasion and epithelial-mesenchymal transition (EMT) by targeting forkhead box Q1 (FOXQ1) (27). Additionally, in oral squamous cell carcinoma, miR-1271 inhibited cell growth and metastasis by targeting anaplastic lymphoma receptor tyrosine kinase (28). In HCC, a previous study demonstrated that miR-96, miR-129-1-3p, miR-1291, miR-1303 and miR-1271 differentially regulated Glypican-3 (GPC3) expression levels in HCC cells and that the upregulation of GPC3 was associated with a concomitant downregulation of its repressor miR-1271 (29). However, the roles served by miR-1271 in HCC remain unclear.The present study analyzed the expression level of miR-1271 in HCC tissues and determined the in vitro function of miR-1271. The aim of the ...
Ectopic expression of microRNA (miRNA) in rheumatoid arthritis (RA) fibroblast-like synoviocyte (RA FLS) is associated with the development of rheumatoid arthritis. The present study aimed to evaluate the effects of miRNA-140-5p (miR-140) on the properties of RA FLSs. It was found that miR-140 expression was decreased in 33 RA patients and extracted RA FLS samples, when compared to the corresponding healthy controls. Abnormally increased miR-140 expression in RA FLSs attenuated cell proliferation and increased cell apoptosis. Additionally, reduced pro-inflammatory cytokine production was observed in RA FLSs transfected with a miR-140 precursor. Furthermore, the 3'-UTR of the signal transducer and activator of transcription (STAT) 3 gene was identified as a target of miR-140. Notably, restoration of STAT3 expression rescued the regulatory effect of miR-140 on the proliferation, apoptosis and inflammatory cytokine production of RA FLSs. Therefore, the current findings indicated that miR-140 is a crucial modulator of both proliferation and apoptosis, shedding light on the etiology behind RA FLS viability, which is modulated by an interplay between miR-140 and STAT3 in the context of RA.
Species belonging to the genus Erwinia cause diseases in many economically important plants (Mansfield et al. 2012). In May 2021, celery plants (Apium graveolens var. dulce) showing soft rot symptoms were observed in greenhouses (cv. Queen of France) in Boye County, Baoding, Hebei Province (North China). Disease symptoms began with pinkish water-soaked lesions on the midrib of celery stalks, but at the same time the leaves and root did not show symptoms. The infected celery plants rapidly developed brownish rotten stalks and leaves turned dry and yellow, but root remained asymptomatic. The disease incidence in two greenhouses (0.15 ha in size) was more than 50%. Affected celery stalk tissues were cut into 0.5 cm pieces, followed by surface sterilization using 75% ethanol for 60 sec and then three successive rinses with sterile distilled water. Then, the tissues were immersed in 200 µl 0.9% saline for 15 min. Aliquots of two tenfold dilutions of the tissue specimen soaking solution were plated onto Luria-Bertani (LB) agar plates and incubated at 28°C for 24 h. Single colonies were picked and restreaked onto LB agar three times for purity. The bacterial gDNA was extracted using the EasyPure Bacteria Genomic DNA Kit (TransGen Biotech). The 16S rDNA region was amplified by PCR using the universal primers 27F/1492R and sequenced. Result of blastn analysis of the 16S rDNA amplicons (MZ489246-MZ489247) indicated that the bacterial isolates (BY21311 and BY21312) belonged to the genus Erwinia. Biolog analysis (GEN III Microplate) identified the two isolates BY21311 (SIM=0.668) and BY21312 (SIM=0.638) as E. rhapontici. Housekeeping genes including acnA, gapA, icdA, mdh and rpoS were also amplified using a set of PCR primers (Ma et al. 2007; Waleron et al. 2008) followed by sequencing (MZ463029-MZ463038). To determine the species of the Erwinia isolates BY21311 and BY21312, multi-locus sequence analysis (MLSA) was performed with five housekeeping genes, and phylogenetic tree was reconstructed using RAxML v8.2.12 (Stamatakis et al. 2005). No sequence variation was observed at any MLSA locus between BY21311 and BY21312. The result of phylogenetic analysis showed that the celery stalk rot isolates BY21311 and BY21312 were clustered with E. rhapontici isolates. These celery isolates are closely related to the cabbage (Brassica rapa) isolate MAFF311153 (AP024329.1) in Japan. When celery plants have eight to nine true leaves, plants (cv. Queen of France) were inoculated with the isolate BY21311 by injecting 20 µl of bacterial suspensions (106 CFU·mL-1) into the celery stalks, or injected with 20 µl of 0.9% saline as control. The seedlings were grown at 25 °C and 50% relative humidity. Three days after inoculation, only infected seedling showed disease symptoms resembled to those observed in greenhouses. Bacterial colonies were obtained from the infected stalks and were identified using the same PCR primers of housekeeping genes as described above, fulfill Koch’s postulates. E. rhapontici has been reported to cause pink seed, crown and stem rot, soft rot or leaf spot on many plant hosts including pea (Pisum sativum), chickpea (Cicer arietinum), lentil (Lens culinaris), common bean (Phaseolus vulgaris), lucerne (Medicago sativa), wheat (Triticum aestivum), hyacinth (Hyacinthus orientalis), onion (Allium cepa), kiwifruit (Actinidia chinensis) and peach (Prunus persica) (Huang et al. 2003; Wang et al. 2017; Zhang et al. 2018; Kovács et al. 2020). To our knowledge, this is the first report of E. rhapontici causing stalk rot in celery. Stalk rot of celery has increased in prevalence over recent years in the Baoding region, it can cause significant yield loss and no cultivar has been found to be resistant to this disease so far. The stalk rot poses significant threat to local celery production, and further research on epidemiology and disease management options is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.