Both epidemiologic and experimental animal studies demonstrate that chronic psychological stress exerts adverse effects on the initiation and/or progression of many diseases. However, intergenerational effects of this environmental information remains poorly understood. Here, using a C57BL/6 mouse model of restraint stress, we show that offspring of stressed fathers exhibit hyperglycemia due to enhanced hepatic gluconeogenesis and elevated expression of PEPCK. Mechanistically, we identify an epigenetic alteration at the promoter region of the Sfmbt2 gene, a maternally imprinted polycomb gene, leading to a downregulation of intronic microRNA-466b-3p, which post-transcriptionally inhibits PEPCK expression. Importantly, hyperglycemia in F1 mice is reversed by RU486 treatment in fathers, and dexamethasone administration in F0 mice phenocopies the roles of restraint stress. Thus, we provide evidence showing the effects of paternal psychological stress on the regulation of glucose metabolism in offspring, which may have profound implications for our understanding of health and disease risk inherited from fathers.
Background and Aims Nonalcoholic fatty liver disease (NAFLD) is characterized by accumulation of excessive triglycerides (TGs) in hepatocytes. Obesity is a major risk factor for developing fatty liver, although the intracellular molecular basis remains largely unclear. N6‐methyladenosine (m6A) RNA methylation is the most common internal modification in eukaryotic mRNA. Approach and Results In the present study, by m6A sequencing and RNA sequencing, we found that both m6A enrichment and mRNA expression of lipogenic genes were significantly increased in leptin‐receptor–deficient db/db mice. Importantly, our results showed that YT521‐B homology domain‐containing 2 (Ythdc2), an m6A reader, was markedly down‐regulated in livers of obese mice and NAFLD patients. Suppression of Ythdc2 in livers of lean mice led to TG accumulation, whereas ectopic overexpression of Ythdc2 in livers of obese mice improved liver steatosis and insulin resistance. Mechanistically, we found that Ythdc2 could bind to mRNA of lipogenic genes, including sterol regulatory element‐binding protein 1c, fatty acid synthase, stearoyl‐CoA desaturase 1, and acetyl‐CoA carboxylase 1, to decrease their mRNA stability and inhibit gene expression. Conclusions Our findings describe an important role of the m6A reader, Ythdc2, for regulation of hepatic lipogenesis and TG homeostasis, which might provide a potential target for treating obesity‐related NAFLD.
Type 2 diabetes mellitus (T2DM) has become one of the most serious and long-term threats to human health. However, the molecular mechanism that links obesity to insulin resistance remains largely unknown. Here, we show that F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, is markedly downregulated in the liver of two obese mouse models and obese human subjects. We further identify a functional low-frequency human FBXW7 coding variant (p.Ala204Thr) in the Chinese population, which is associated with elevated blood glucose and T2DM risk. Notably, mice with liver-specific knockout of FBXW7 develop hyperglycemia, glucose intolerance, and insulin resistance even on a normal chow diet. Conversely, overexpression of FBXW7 in the liver not only prevents the development of high-fat diet-induced insulin resistance but also attenuates the disease signature of obese mice. Mechanistically, FBXW7 directly binds to hepatokine fetuin-A to induce its ubiquitination and subsequent proteasomal degradation, comprising an important mechanism maintaining glucose homeostasis. Thus, we provide evidence showing a beneficial role of FBXW7 in glucose homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.