Eukaryotic cells are segmented into multiple compartments or organelles within the cell that regulate distinct chemical and biological processes. Membrane-less organelles are membrane-less microscopic cellular compartments that contain protein and RNA molecules that perform a wide range of functions. Liquid–liquid phase separation (LLPS) can reveal how membrane-less organelles develop via dynamic biomolecule assembly. LLPS either segregates undesirable molecules from cells or aggregates desired ones in cells. Aberrant LLPS results in the production of abnormal biomolecular condensates (BMCs), which can cause cancer. Here, we explore the intricate mechanisms behind the formation of BMCs and its biophysical properties. Additionally, we discuss recent discoveries related to biological LLPS in tumorigenesis, including aberrant signaling and transduction, stress granule formation, evading growth arrest, and genomic instability. We also discuss the therapeutic implications of LLPS in cancer. Understanding the concept and mechanism of LLPS and its role in tumorigenesis is crucial for antitumor therapeutic strategies.
<b><i>Introduction:</i></b> <i>Artemisia argyi</i> polysaccharide (AAP) has a beneficial effect on menstruation-related symptoms and the potential regulation of lipid metabolism. It is expected to be a safe and effective ingredient for estrogen deficiency and lipid metabolic disorders. Here, we investigate the effect of AAP on body weight gain, estrogen level, and blood lipid changes in ovariectomized (OVX) rats. <b><i>Methods:</i></b> Thirty-six female Wistar rats were randomly divided into six treatment groups, including a sham-operated (Sham) group, OVX group, estrogen replacement (OVX + E2) group, and AAP treatment (OVX + 125, 250, 500 mg/kg AAP) group. The body weight and feed intake were recorded every week. The level of estrogen and blood lipid was determined. The gene expressions and protein expressions of estrogen receptors (ERs), fatty acid synthetase (FAS), acetyl CoA carboxylase 2 (ACC2), and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) were determined. <b><i>Results:</i></b> AAP treatment significantly decreased the body weight gain and average daily food intake of rats in the OVX group. Treatment with AAP significantly increased the relative weight of the uterus, plasma estrogen level, and the gene expression and protein expression of ER-α in the uterus. For blood lipids, plasma levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced by AAP treatment in OVX rats. AAP treatment decreased the expression of FAS and HMGR in the liver of OVX rats. Furthermore, AAP treatment significantly increased the gene expression of ACC2, the protein expression of P-ACC2, and the ratio of P-ACC2/ACC2. <b><i>Conclusion:</i></b> In summary, AAP treatment exerts beneficial effects on body weight gain and lipid metabolism disorder induced by ovariectomy through increasing estrogen levels, inhibiting FAS, and promoting fatty acid oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.