Recent reports of infectious bursal disease virus (IBDV) infections in China, Japan, and North America have indicated the presence of variant, and the current conventional IBDV vaccine cannot completely protect against variant IBDV. In this study, we constructed recombinant Lactococcus lactis (r-L. lactis) expressing a novel variant of IBDV VP2 (avVP2) protein along with the Salmonella resistance to complement killing (RCK) protein, and Western blotting analysis confirmed that r-L. lactis successfully expressed avVP2-RCK fusion protein. We immunized chickens with this vaccine and subsequently challenged them with the very virulent IBDV (vvIBDV) and a novel variant wild IBDV (avIBDV) to evaluate the immune effect of the vaccine. The results show that the r-L. lactis-avVP2-RCK-immunized group exhibited a 100% protection rate when challenged with avIBDV and 100% survival rate to vvIBDV. Furthermore, this immunization resulted in the production of unique neutralizing antibodies that cannot be detected by conventional ELISA. These results indicate that r-L. lactis-avVP2-RCK is a promising candidate vaccine against IBDV infections, which can produce unique neutralizing antibodies that cannot be produced by other vaccines and protect against IBDV infection, especially against the variant strain.
In this study, we expressed rAvBD1-2–6-13 protein through Lactococcus lactis NZ3900, and the effects of the recombinant L. lactis NZ3900 as an immune enhancer and immune adjuvant were verified using in vivo and in vitro tests. In vitro tests revealed that recombinant L. lactis NZ3900 significantly activated the NF-κB signaling pathway and IRF signaling pathway in J774-Dual™ report cells and significantly increased the transcript levels of IL-10, IL-12p70, CD80, and CD86 in chicken PBMCs and chicken HD11 cells. In vivo experiments revealed that the immunized group supplemented with recombinant L. lactis NZ3900 as an adjuvant had significantly higher serum antibody titers and higher proliferative activity of PBMCs in the blood of the chickens immunized with NDV live and inactivated vaccines. Our study shows that the recombinant L. lactis NZ3900 has strong immunomodulatory activity both in vivo and in vitro and is a potential immune enhancer. Our work lays the foundation for the research and development of new animal immune enhancers for application in the poultry industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.