In an effort to improve impact energy-absorption characteristics, this study introduces a cylindrical crash absorber (CAP) with discontinuous protrusions and a continuous local-expansion plastic-forming method for its manufacture. The mechanical properties of the cylindrical energy-absorption structure were modified by installing multiple particle protrusions on the cylinder sidewall to reduce the initial pickup load and improve the impact energy-absorption performance. To facilitate manufacture of the proposed CAP, a cylindrical rubber piece was placed into a cylindrical tube and pressure was applied to the rubber from both ends of the tube. The CAP was formed by the bulging force of the rubber. The formability was verified by developing a successive local bulge-forming experimental device and comparing the manufactured CAP with the results of numerical simulations. Testing of quasi-static collapse conducted on a CAP manufactured using this device verified the effectiveness of the proposed CAP design and its plastic-forming method. It was determined that this design reduced the initial peak load, and the crash absorber could maintain stability over a long, continuous distance during crushing deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.