This study aimed to demonstrate that ginsenoside compound K (20 (S)-ginsenoside CK; CK) downregulates Bcl-2-associated transcription factor 1 (Bclaf1), which inhibits the hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis pathway to inhibit the proliferation of liver cancer cells. Treatment of hepatoma cells (Bel-7404 and Huh7) under hypoxic conditions with different concentrations of CK showed that CK inhibited the proliferation of hepatoma cells in a time- and concentration-dependent manner; furthermore, the ability of the cells to form colonies was reduced, and cell growth was blocked in the G0/G1 phase. CK promoted the degradation of HIF-1α ubiquitination in liver cancer cells by regulating the expression of HIF-1α and related ubiquitination proteins; moreover, it reduced the activity of key enzymes involved in glycolysis, the pressure of cellular glycolysis, and the rate of real-time ATP production, thereby inhibiting the glycolysis pathway. It also decreased the expression of Bclaf1 in hypoxic liver cancer cells and thus reduced the ability of Bclaf1 to bind to HIF-1α. CK treatment of Bel-7404 and Huh7 cells with CRISPR/Cas9-engineered knock out of Bclaf1 gene under hypoxic conditions further suppressed the expression of HIF-1α, promoted HIF-1α ubiquitination, and inhibited the glycolysis pathway. In a rat model of primary liver cancer induced by diethylnitrosamine, positron emission tomography and computed tomography scans showed that after CK administration, tumor tissue volumes were reduced and glucose uptake capacity decreased. Increased Bclaf1 and HIF-1α expression promoted the ubiquitination of HIF-1α and inhibited the glycolysis pathway, thereby inhibiting the proliferation of liver cancer cells. In summary, this study confirmed by in vitro and in vivo experiments that in hypoxic liver cancer cells CK downregulates the expression of Bclaf1, inhibits the HIF-1α-mediated glycolysis pathway, and inhibits cell proliferation, suggesting that the CK-mediated effects on Bclaf1 may represent a novel therapeutic approach for the treatment of liver cancer patients.
Curcumin is a yellow pigment extracted from the rhizome of turmeric, a traditional Chinese medicine. Here, we tested the hypothesis that curcumin-mediated downregulation of BCLAF1 triggers mitochondrial apoptosis in hepatoma cells by inhibiting PI3K/AKT/GSK-3β signaling. Treatment of the human hepatoma cell lines, HepG2 and SK-Hep-1, with various concentrations of curcumin revealed a time-dependent and concentration-dependent inhibition of cell proliferation, increased apoptosis, cell cycle arrest at the G0/G1 phase, reduced mitochondrial membrane potential, and reduced expression levels of PI3K, p-PI3K, AKT, p-AKT, GSK-3β, and p-GSK-3β. Additionally, curcumin suppressed the levels of apoptotic factors after treating the cells with LY294002, a PI3K inhibitor. Curcumin also suppressed the expression of BCLAF1. Treating stable BCLAF1 knockout HepG2 and SK-Hep-1 cells with curcumin further enhanced apoptosis and increased the number of cells in G0/G1 cell cycle arrest, while inhibiting the downregulation of PI3K/AKT/GSK-3β pathway-related proteins. Treatment of a nude mouse xenograft model bearing HepG2 cells with curcumin inhibited tumor growth, disrupted the cellular structure of the tumor tissue, and suppressed the expression of BCLAF1 and PI3K/AKT/GSK-3β proteins. In summary, our in vitro and in vivo analyses show that curcumin downregulates BCLAF1 expression, inhibits the activation of the PI3K/AKT/GSK-3β pathway, and triggers mitochondrial apoptosis in HCC. These findings uncover a potential therapeutic strategy leveraging the antitumor effects of curcumin against HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.