Background: Erythema multiforme (EM) is an acute immune-mediated inflammatory mucinous skin disorder. The etiology of pediatric EM involves infections, medications, autoimmune diseases, and genetic factors.Case Report: An 8-year-old girl with Mycoplasma pneumoniae (MP) associated community-acquired pneumonia developed erythema target-like symptoms 1 week after azithromycin administration. The erythema quickly spread throughout the body involving the oral and ocular mucous membranes, the trunk, and the extremities, and eventually developed into erythema multiform major (EMM). Through drug withdrawal and specific treatment including systemic corticosteroids and supportive care, her clinical symptoms were improved. After 31 days, most of the mucocutaneous symptoms were relieved, except pigmentation. Human leukocyte antigen (HLA) gene sequencing was performed and 20 HLA genotypes were identified. The patient follow-up lasted for 18 months. Rashes appeared on her trunk when receiving azithromycin orally after discharge and then disappeared after azithromycin withdrawal.Conclusions: Pediatric EM is a rare disease and recognition of its etiology is important for EM management. In this case, azithromycin and HLA-DQB1*03:01 genotype may contribute to EMM.Lesson: For drug-induced EM, rapid identification and withdrawal of the causative drugs is critical. Re-exposure to the same drug or exposure to drugs with similar chemical structures should also be avoided. Patient education and rational use of medicines are essential for pediatric patients.
Objective: The aim of this study was to establish a population pharmacokinetic (PPK) model of valproic acid (VPA) in pediatric patients with epilepsy in southern China, and provide guidance for individualized medication of VPA therapy.Methods: A total of 376 VPA steady-state trough concentrations were collected from 103 epileptic pediatric patients. The PPK parameter values for VPA were calculated by using the nonlinear mixed-effects modeling (NONMEM) method, and a one-compartment model with first-order absorption and elimination processes was applied. Covariates included demographic information, concomitant medications and selected gene polymorphisms. Goodness-of-fit (GOF), bootstrap analysis, and visual predictive check (VPC) were used for model evaluation. In addition, we used Monte Carlo simulations to propose dose recommendations for different subgroup patients.Results: A significant effect of the patient age and ABCB1 genotypes was observed on the VPA oral clearance (CL/F) in the final PPK model. Compared with patients with the ABCB1 rs3789243 AA genotype, CL/F in patients with GG and AG genotypes was increased by 8% and reduced by 4.7%, respectively. The GOF plots indicated the satisfactory predictive performance of the final model, and the evaluation by bootstrap and VPC showed that a stable model had been developed. A table of individualized dosing regimens involving age and ABCB1 genotype was constructed based on the final PPK model.Conclusion: This study quantitatively investigated the effects of patient age and ABCB1 rs3789243 variants on the pharmacokinetic variability of VPA. The PPK models could be beneficial to individual dose optimization in epileptic children on VPA therapy.
Epilepsy is a common neurologic disorder characterized by intractable seizures, involving genetic factors. There is a need to develop reliable genetic markers to predict the risk of epilepsy and design effective therapies. Arsenite methyltransferase (AS3MT) catalyzes the biomethylation of arsenic and hence regulates arsenic metabolism. AS3MT variation has been linked to the progression of various diseases including schizophrenia and attention deficit or hyperactivity disorder. Whether genetic polymorphism of AS3MT contributes to epilepsy remains unclear. In this study, we investigated the association of AS3MT gene polymorphism with susceptibility to epilepsy in children from south China. We also explored the effect of AS3MT variation on the safety of antiepileptic drugs. Genotypic analysis for AS3MT rs7085104 was performed using samples from a Chinese cohort of 200 epileptic children and 244 healthy individuals. The results revealed a genetic association of AS3MT rs7085104 with susceptibility to pediatric epilepsy. Mutant homozygous GG genotype exhibited a lower susceptibility to childhood epilepsy than AA genotype. Carriers of AS3MT rs7085104 AA genotype exhibited a higher risk of digestive adverse drug reactions (dADRs) in children when treated with valproic acid (VPA) or oxcarbazepine (OXC). Additionally, bioinformatics analysis identified eight AS3MT target genes related to epilepsy and three AS3MT-associated genes in VPA-related dADRs. The effects of AS3MT on epilepsy might involve multiple targets including CNNM2, CACNB2, TRIM26, MTHFR, GSTM1, CYP17A1, NT5C2, and YBX3. This study reveals that AS3MT may be a new gene contributing to epileptogenesis. Hence, analysis of AS3MT polymorphisms will help to evaluate susceptibility to pediatric epilepsy and drug safety.
Background Valproic acid (VPA) is recommended as a first-line treatment for children with epilepsy. GABRG2 polymorphism is found to be associated with epilepsy susceptibility and therapeutic response of anti-seizure medications (ASM); however, the role of GABRG2 in VPA treatment still remains unknown. Objective The purpose of this study was to explore the association of GABRG2 gene polymorphism with the drug response and adverse drug reactions (ADRs) related to VPA. Methods A retrospective study including 96 Chinese children with epilepsy treated by VPA was carried out. The ADRs were collected during VPA therapy and GABRG2 rs211037 in enrolled patients was genotyped using Sequenom MassArray system. A network pharmacological analysis involved protein–protein interaction and enrichment analysis was constructed to investigate the potential targets and pathways of GABRG2 on VPA-related ADRs. Results Among 96 patients, 41 individuals were defined as seizure together with 49 patients with seizure-free and 6 patients unclassified. Carriers of homozygote GABRG2 rs211037 CC genotype exhibited seizure-free to VPA ( P = 0.042), whereas those with CT genotype showed seizure. Furthermore, CC genotype had predisposition to digestive ADRs ( P = 0.037) but was a protective factor for VPA-associated weight gain ( P = 0.013). Ten key genes related to digestive ADRs and weight gain induced by VPA were identified by network pharmacological analysis and mainly involved in “GABAergic synaptic signaling”, “GABA receptor signaling”, and “taste transduction” pathways/processes through enrichment analysis. Conclusion This study revealed that GABRG2 variation exerted a predictable role in the efficacy and safety of VPA treatment for Chinese children with epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.