We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful.We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor k ≥ 1 by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive k-compositional protocol into an equivalent sequentially interactive protocol with an O(k) blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any k, there is a fully interactive k-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least anΩ(k) factor more examples.We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems -which include all simple hypothesis testing problems as a special case -a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests.
We consider the problem of finding the k th highest element in a totally ordered set of n elements (Select), and partitioning a totally ordered set into the top k and bottom n − k elements (Partition) using pairwise comparisons. Motivated by settings like peer grading or crowdsourcing, where multiple rounds of interaction are costly and queried comparisons may be inconsistent with the ground truth, we evaluate algorithms based both on their total runtime and the number of interactive rounds in three comparison models: noiseless (where the comparisons are correct), erasure (where comparisons are erased with probability 1 − γ), and noisy (where comparisons are correct with probability 1/2 + γ/2 and incorrect otherwise). We provide numerous matching upper and lower bounds in all three models. Even our results in the noiseless model, which is quite well-studied in the TCS literature on parallel algorithms, are novel.
We consider the question of interactive communication, in which two remote parties perform a computation while their communication channel is (adversarially) noisy. We extend here the discussion into a more general and stronger class of noise, namely, we allow the channel to perform insertions and deletions of symbols. These types of errors may bring the parties "out of sync", so that there is no consensus regarding the current round of the protocol.In this more general noise model, we obtain the first interactive coding scheme that has a constant rate and tolerates noise rates of up to 1/18−ε. To this end we develop a novel primitive we name edit distance tree code. The edit distance tree code is designed to replace the Hamming distance constraints in Schulman's tree codes (STOC 93), with a stronger edit distance requirement. However, the straightforward generalization of tree codes to edit distance does not seem to yield a primitive that suffices for communication in the presence of synchronization problems. Giving the "right" definition of edit distance tree codes is a main conceptual contribution of this work.
We consider the problem of a single seller repeatedly selling a single item to a single buyer (specifically, the buyer has a value drawn fresh from known distribution D in every round). Prior work assumes that the buyer is fully rational and will perfectly reason about how their bids today affect the seller's decisions tomorrow. In this work we initiate a different direction: the buyer simply runs a no-regret learning algorithm over possible bids. We provide a fairly complete characterization of optimal auctions for the seller in this domain. Specifically:• If the buyer bids according to EXP3 (or any "mean-based" learning algorithm), then the seller can extract expected revenue arbitrarily close to the expected welfare. This auction is independent of the buyer's valuation D, but somewhat unnatural as it is sometimes in the buyer's interest to overbid.• There exists a learning algorithm A such that if the buyer bids according to A then the optimal strategy for the seller is simply to post the Myerson reserve for D every round.• If the buyer bids according to EXP3 (or any "mean-based" learning algorithm), but the seller is restricted to "natural" auction formats where overbidding is dominated (e.g. Generalized First-Price or Generalized Second-Price), then the optimal strategy for the seller is a pay-your-bid format with decreasing reserves over time. Moreover, the seller's optimal achievable revenue is characterized by a linear program, and can be unboundedly better than the best truthful auction yet simultaneously unboundedly worse than the expected welfare.2. There exists a natural no-regret algorithm A such that when the buyer bids according to A, the seller's default strategy (charging the Myerson reserve every round) is optimal (Theorem 3.2).3. If the buyer uses a "mean-based" algorithm only over undominated strategies, the seller can extract revenue MBRev(D) using an auction where overbidding is dominated in every round. Moreover, we characterize MBRev(D) as the value of a linear program, and show it can be
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.