Sepsis, an infection-induced systemic inflammatory disorder, is often accompanied by multiple organ dysfunction syndromes with high incidence and mortality rates, and those who survive are often left with long-term sequelae, bringing great burden to social economy. Therefore, novel approaches to solve this puzzle are urgently needed. Previous studies revealed that long non-coding RNAs (lncRNAs) have exerted significant influences on the process of sepsis. The aim of this review is to summarize our understanding of lncRNAs as potential sepsis-related diagnostic markers and therapeutic targets, and provide new insights into the diagnosis and treatment for sepsis. In this study, we also introduced the current diagnostic markers of sepsis and discussed their limitations, while review the research advances in lncRNAs as promising biomarkers for diagnosis and prognosis of sepsis. Furthermore, the roles of lncRNAs in sepsis-induced organ dysfunction were illustrated in terms of different organ systems. Nevertheless, further studies should be carried out to elucidate underlying molecular mechanisms and pathological process of sepsis.
Ureaplasma urealyticum (UU) is commonly present in human reproductive tract, which frequently leads to genital tract infection. Hence, there is an urgent need to develop a rapid detection method for UU. In our study, a real-time fluorescence loop-mediated isothermal amplification (LAMP) assay was developed and evaluated for the detection of UU. Two primers were specifically designed based on the highly conserved regions of ureaseB genes. The reaction was carried out for 60 min in a constant temperature system using Bst DNA polymerase, and the process was monitored by real-time fluorescence signal, while polymerase chain reaction (PCR) was performed simultaneously. In real-time fluorescence LAMP reaction system, positive result was only obtained for UU among 9 bacterial strains, with detection sensitivity of 42 pg/μL (4.2 × 105 CFU/mL), and all 16 clinical samples of UU could be detected. In conclusion, real-time fluorescence LAMP is a simple, sensitive, specific and effective method compared with conventional PCR, which shows great promise in the rapid detection of UU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.