Evidence that offspring traits can be shaped by parental life experiences in an epigenetically inherited manner paves a way for understanding the etiology of depression. Here, we show that F1 offspring born to F0 males of depression-like model are susceptible to depression-like symptoms at the molecular, neuronal, and behavioral levels. Sperm small RNAs, and microRNAs (miRNAs) in particular, exhibit distinct expression profiles in F0 males of depression-like model and recapitulate paternal depressive-like phenotypes in F1 offspring. Neutralization of the abnormal miRNAs in zygotes by antisense strands rescues the acquired depressive-like phenotypes in F1 offspring born to F0 males of depression-like model. Mechanistically, sperm miRNAs reshape early embryonic transcriptional profiles in the core neuronal circuits toward depression-like phenotypes. Overall, the findings reveal a causal role of sperm miRNAs in the inheritance of depression and provide insight into the mechanism underlying susceptibility to depression.
Given the complex nature of ulcerative colitis, combination therapy targeting multiple pathogenic genes and pathways of ulcerative colitis may be required. Unfortunately, current therapeutic strategies are usually based on independent chemical compounds or monoclonal antibodies, and the full potential of combination therapy has not yet been realized for the treatment of ulcerative colitis. Here, we develop a synthetic biology strategy that integrates the naturally existing circulating system of small extracellular vesicles with artificial genetic circuits to reprogram the liver of male mice to self-assemble multiple siRNAs into secretory small extracellular vesicles and facilitate in vivo delivery siRNAs through circulating small extracellular vesicles for the combination therapy of mouse models of ulcerative colitis. Particularly, repeated injection of the multi-targeted genetic circuit designed for simultaneous inhibition of TNF-α, B7-1 and integrin α4 rapidly relieves intestinal inflammation and exerts a synergistic therapeutic effect against ulcerative colitis through suppressing the pro-inflammatory cascade in colonic macrophages, inhibiting the costimulatory signal to T cells and blocking T cell homing to sites of inflammation. More importantly, we design an AAV-driven genetic circuit to induce substantial and lasting inhibition of TNF-α, B7-1 and integrin α4 through only a single injection. Overall, this study establishes a feasible combination therapeutic strategy for ulcerative colitis, which may offer an alternative to conventional biological therapies requiring two or more independent compounds or antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.