We apply the new version of a gedanken experiment designed recently by Sorce and Wald to overspin the five-dimensional Myers-Perry black holes. As a result, the extremal black holes cannot be overspun at the linear order. On the other hand, although the nearly extremal black holes could be overspun at the linear order, this process is shown to be prohibited by the quadratic order correction. Thus, no violation of the weak cosmic censorship conjecture occurs around the five-dimensional Myers-Perry black holes.
We study correlation functions for extremal supersymmetric black holes. It is necessary to take into account the strongly coupled nature of the boundary supergraviton mode. We consider the case with N = 2 supercharges which is the minimal amount of supersymmetry needed to give a large ground state degeneracy, separated from the continuum. Using the exact solution for this theory we derive formulas for the two point function and we also give integral expressions for any n-point correlator. These correlators are time independent at large times and approach constant values that depend on the masses and couplings of the bulk theory. We also explain that in the non-supersymmetric case, the correlators develop a universal time dependence at long times. This paper is the longer companion paper of [1].
By using a recent approach proposed by Hackl et al. to evaluate the complexity of the free fermionic Gaussian state, we compute the complexity of the Dirac vacuum state as well as the excited state of the Fermi system with a mass quench. First of all, we review the counting method given by Hackl et al., and demonstrate that the result can be adapted to all of the compact transformation group G. Then, we utilize this result to study the time evolution of the complexity of these states. We show that, for the rotational invariant reference state, the total complexity of the incoming vacuum state will saturate the value of the instantaneous vacuum state at the late time, with a typical timescale to achieve the final stable state. Moreover, we find that the complexity growth under the sudden quench is directly proportional to the mass difference, which shares similar behaviors with the holograph complexity growth rate in an AdS-Vaidya black hole with a shock wave, even though the dual boundary CFT is strongly coupled. Finally, we obtain some features of the excited state and the non-rotational reference state. *
We study correlation functions for extremal supersymmetric black holes. It is necessary to take into account the strongly coupled nature of the boundary supergraviton mode. We consider the case with {\cal N}=2 supercharges which is the minimal amount of supersymmetry needed to give a large ground state degeneracy, separated from the continuum. Using the exact solution for this theory we derive formulas for the two point function and we also give integral expressions for any nn-point correlator. These correlators are time independent at large times and approach constant values that depend on the masses and couplings of the bulk theory. We also explain that in the non-supersymmetric case, the correlators develop a universal time dependence at long times. This paper is the longer companion paper of arXiv:2207.00407.
We study the gravitational description of extremal supersymmetric black holes. We point out that the AdS 2 near horizon geometry can be used to compute interesting observables, such as correlation functions of operators. In this limit, the Hamiltonian is zero and correlation functions are time independent. We discuss some possible implications for the gravity description of black hole microstates. We also compare with numerical results in a supersymmetric version of SYK. These results can also be interpreted as providing a construction of wormholes joining two extremal black holes. This is the short version of a longer and more technical companion paper [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.