A vehicle with a four-channel anti-lock braking system (ABS) has poor safety and stability when braking on a low-adhesion road or off-road. In view of this situation, this paper proposes a multi-objective optimization coordinated control method for ABS and AFS based on multi-agent model predictive control (MPC). Firstly, the single-wheel control method is adopted to establish the single-wheel equation based on the slip rate and the stability equation of the centroid yaw based on AFS. The four wheels and the centroid are regarded as agents. The mathematical model of distributed drive electric vehicles based on graph theory and the coordinated control of AFS and ABS is established to reduce the dimension of the model. Secondly, on the basis of the multi-agent theory, an integrated coordinated control method for AFS and ABS based on distributed model predictive control (DMPC) is proposed to realize the ideal values of the vehicle’s slip rate, yaw rate, and sideslip angle, and improve the braking safety and handling stability of the vehicle. Then, to solve the problems of high levels of resource consumption, low real-time performance, and complex implementation in the optimization of the DMPC solution, a prediction solution method using a discrete simplified dual neural network (SDNN) is proposed to balance the computational efficiency and system dynamic performance. Finally, a hardware-in-the-loop (HIL) test bench is built to test the effectiveness of the proposed method under the conditions of a low-adhesion road and an off-road.
The problem that it is difficult to balance vehicle stability and economy at the same time under the starting steering condition of a four-wheel independent drive electric vehicle (4WIDEV) is addressed. In this paper, we propose a coordinated optimal control method of AFS and DYC for a four-wheel independent drive electric vehicle based on the MAS model. Firstly, the angular velocity of the transverse pendulum at the center of mass and the lateral deflection angle of the center of mass are decoupled by vector transformation, and the two-degree-of-freedom eight-input model of the vehicle is transformed into four two-degree-of-freedom two-input models, and the reduced-dimensional system is regarded as four agents. Based on the hardware connection structure and communication topology of the four-wheel independent drive electric vehicle, the reduced-dimensional model of 4WIDEV AFS and DYC coordinated optimal control is established based on graph theory. Secondly, the deviation of the vehicle transverse swing angular velocity and mass lateral deflection angle from their ideal values is oriented by combining sliding mode variable structure control (SMC) with distributed model predictive control (DMPC). A discrete dynamic sliding mode surface function is proposed for the ith agent to improve the robustness of the system in response to parameter variations and disturbances. Considering the stability and economy of the ith agent, an active front wheel steering and drive torque optimization control method based on SMC and DMPC is proposed for engineering applications. Finally, a hardware-in-the-loop (HIL) test bench is built for experimental verification, and the results show that the steering angle is in the range of 0–5°, and the proposed method effectively weighs the system dynamic performance, computational efficiency, and the economy of the whole vehicle. Compared with the conventional centralized control method, the torque-solving speed is improved by 32.33 times, and the electrical consumption of the wheel motor is reduced by 16.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.