There are multiple sources of reactive oxygen species (ROS) in the cell. As a major site of ROS production, mitochondria have drawn considerable interest because it was recently discovered that mitochondrial ROS (mtROS) directly stimulate the production of proinflammatory cytokines and pathological conditions as diverse as malignancies, autoimmune diseases, and cardiovascular diseases all share common phenotype of increased mtROS production above basal levels. Several excellent reviews on this topic have been published, but ever-changing new discoveries mandated a more up-to-date and comprehensive review on this topic. Therefore, we update recent understanding of how mitochondria generate and regulate the production of mtROS and the function of mtROS both in physiological and pathological conditions. In addition, we describe newly developed methods to probe or scavenge mtROS and compare these methods in detail. Thorough understanding of this topic and the application of mtROS-targeting drugs in the research is significant towards development of better therapies to combat inflammatory diseases and inflammatory malignancies.
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Objective The role of receptors for endogenous metabolic danger signals-associated molecular patterns (DAMPs) has been characterized recently as bridging innate immune sensory systems for DAMPs to initiation of inflammation in bone marrow-derived cells such as macrophages. However, it remains unknown whether endothelial cells (ECs), the cell type with the largest numbers and the first vessel cell type exposed to circulating DAMPs in the blood, can sense hyperlipidemia. This report determined whether caspase-1 plays a role in ECs in sensing hyperlipidemia and promoting EC activation. Approach and Results Using biochemical, immunological, pathological and bone marrow transplantation methods together with the generation of new apoplipoprotein E (ApoE)−/−/caspase-1−/− double knock-out mice we made the following observations: 1) early hyperlipidemia induced caspase-1 activation in ApoE−/− mouse aorta; 2) caspase-1−/−/ApoE−/− mice attenuated early atherosclerosis; 3) caspase-1−/−/ApoE−/− mice had decreased aortic expression of pro-inflammatory cytokines and attenuated aortic monocyte recruitment; and 4) caspase-1−/−/ApoE−/− mice had decreased EC activation including reduced adhesion molecule expression and cytokine secretion. Mechanistically, oxidized lipids activated caspase-1 and promoted pyroptosis in ECs by a ROS mechanism. Caspase-1 inhibition resulted in accumulation of sirtuin 1 (Sirt1) in the ApoE−/− aorta, and Sirt1 inhibited caspase-1 upregulated genes via activator protein-1 (AP-1) pathway. Conclusions Our results demonstrate for the first time that early hyperlipidemia promotes EC activation before monocyte recruitment via a caspase-1-Sirt1-AP-1 pathway, which provides an important insight into the development of novel therapeutics for blocking caspase-1 activation as early intervention of metabolic cardiovascular diseases and inflammations.
Interleukin‐35 (IL‐35), a recently discovered heterodimeric cytokine with anti‐inflammatory/immunosuppressive properties, has a central role in limiting the immune response in various disease models including colitis, arthritis and asthma. However, it remains unknown whether IL‐35 is different from other anti‐inflammatory cytokines such as IL‐10 and transforming growth factor (TGF)‐β in terms of inhibition of inflammation initiation or suppression of full‐blown inflammation. In this study, we examined the tissue expression profiles and regulatory mechanisms of IL‐35 in comparison to other anti‐inflammatory cytokines. Our results suggest that in contrast to TGF‐β, IL‐35 is not constitutively expressed in human tissues but is inducible in response to inflammatory stimuli. We also provide structural evidence suggesting that AU‐rich element (ARE) binding proteins and microRNAs target IL‐35 subunit transcripts, which are responsible for quick degradation of IL‐35. Furthermore, we propose a new system to categorize anti‐inflammatory cytokines into two groups: (1) the housekeeping cytokines, such as TGF‐β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL‐35 suppress inflammation in full‐blown stage. Our in‐depth analysis of molecular events that regulate the production of IL‐35 and new categorization system of anti‐inflammatory cytokines are important for the design of new strategies of immune intervention. This work was partially supported by the National Institutes of Health Grants HL094451 and HL108910 (XFY), HL67033, HL82774 and HL77288 (HW).
Obesity paradox (OP) describes a widely observed clinical finding of improved cardiovascular fitness and survival in some overweight or obese patients. The molecular mechanisms underlying OP remain enigmatic partly due to a lack of animal models mirroring OP in patients. Using apolipoprotein E knock-out (apoE) mice on a high fat (HF) diet as an atherosclerotic obesity model, we demonstrated 1) microRNA-155 (miRNA-155, miR-155) is significantly up-regulated in the aortas of apoE mice, and miR-155 deficiency in apoE mice inhibits atherosclerosis; 2) apoE/miR-155 (double knock-out (DKO)) mice show HF diet-induced obesity, adipocyte hypertrophy, and present with non-alcoholic fatty liver disease; 3) DKO mice demonstrate HF diet-induced elevations of plasma leptin, resistin, fed-state and fasting insulin and increased expression of adipogenic transcription factors but lack glucose intolerance and insulin resistance. Our results are the first to present an OP model using DKO mice with features of decreased atherosclerosis, increased obesity, and non-alcoholic fatty liver disease. Our findings suggest the mechanistic role of reduced miR-155 expression in OP and present a new OP working model based on a single miRNA deficiency in diet-induced obese atherogenic mice. Furthermore, our results serve as a breakthrough in understanding the potential mechanism underlying OP and provide a new biomarker and novel therapeutic target for OP-related metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.