It has been documented in in vitro studies that zinc oxide nanoparticles (ZnO NPs) are capable of inducing oxidative stress, which plays a crucial role in ZnO NP-mediated apoptosis. However, the underlying molecular mechanism of apoptosis in neurocytes induced by ZnO NP exposure was not fully elucidated. In this study, we investigated the potential mechanisms of apoptosis provoked by ZnO NPs in cultured primary astrocytes by exploring the molecular signaling pathways triggered after ZnO NP exposure. ZnO NP exposure was found to reduce cell viability in MTT assays, increase lactate dehydrogenase (LDH) release, stimulate intracellular reactive oxygen species (ROS) generation, and elicit caspase-3 activation in a dose- and time-dependent manner. Apoptosis occurred after ZnO NP exposure as evidenced by nuclear condensation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. A decrease in mitochondrial membrane potential (MMP) with a concomitant increase in the expression of Bax/Bcl-2 ratio suggested that the mitochondria also mediated the pathway involved in ZnO NP-induced apoptosis. In addition, exposure of the cultured cells to ZnO NPs led to phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK). Moreover, JNK inhibitor (SP600125) significantly reduced ZnO NP-induced cleaved PARP and cleaved caspase-3 expression, but not ERK inhibitor (U0126) or p38 MAPK inhibitor (SB203580), indicating that JNK signaling pathway is involved in ZnO NP-induced apoptosis in primary astrocytes.
Background Low energy availability (LEA) is a medical condition observed in athletes, with a higher prevalence in aesthetic sports. For the first time, this study evaluated the relative prevalence of LEA in female elite athletes (ELA) and recreational athletes (REA) in aesthetic sports in China. Methods Female athletes from 6 sports (trampolining, rhythmic gymnastics, aerobics, dance sport, cheerleading and dance) were recruited, including ELA (n = 52; age = 20 ± 3) on Chinese national teams and REA (n = 114; Age = 20 ± 2) from Beijing Sport University. Participants completed 2 online questionnaires to assess LEA and eating disorder risk. These included the Low Energy Availability in Females Questionnaire (LEAF-Q), which provided information on injury history, gastrointestinal function and menstrual history, and the Eating Disorder Inventory-3 Referral Form (EDI-3 RF). For a sub-group of elite athletes (n = 14), body composition, bone mineral density, and blood serum were also quantified. Results A total of 41.6% of participants (n = 69) were at increased risk of LEA, and 57.2% of participants (n = 95) were classified as high in eating disorder risk. For ELA vs. REA, there was a significantly higher prevalence of LEA risk (55.8% vs. 35.1%; p = 0.012) and amenorrhea (53.8% vs. 13.3%; p < 0.001). Elite athletes at increased risk of LEA had significantly lower estradiol (p = 0.021) and whole-body BMD (p = 0.028). Pearson correlations indicated that the whole-body BMD (r = − 0.667, p = 0.009) correlated negatively with LEAF-Q score. Conclusions Results of this study indicate that there is a risk of LEA in female Chinese athletes within aesthetic sports, and significantly higher prevalence of increased LEA risk observed in ELA than in REA. Chinese coaches and sports medicine staff working elite female athletes in aesthetic sports should develop strategies to reduce the prevalence of LEA.
Background Past studies have found that sodium bicarbonate ingestion prior to exercise has a performance-enhancing effect on high-intensity exercise. The aim of this study was to investigate the effects of continuous sodium bicarbonate (NaHCO 3 ) supplementation on anaerobic performance during six weeks of high-intensity interval training (HIIT). Methods Twenty healthy college-age male participants were randomly assigned to either the HCO 3 − group (SB) or the placebo group (PL), with 10 subjects in each group. Both groups completed 6 weeks (3 days/week) of HIIT with the SB ingesting an orange-flavored solution containing 15 g xylitol and 0.2 g HCO 3 − /kg body mass during each training day, and PL ingesting a similar beverage that was HCO 3 − -free. This study separated 6 weeks of training into two stages with different training intensities, with the first 3 weeks at a lower intensity than the second 3 weeks. Blood samples to measure serum HCO 3 − were obtained 5 min before and 30 min after the following HIIT training sessions: Week 1, training session 1; week 3, training session 3; week 6, training session 3. Three 30s Wingate tests (WAnT) were conducted before, in the middle, and after the training and the supplementation interventions, with peak power, mean power, and fatigue index obtained during WAnT, and blood lactate and heart rate obtained after WAnT. Results Our findings indicate the following: 1) Serum HCO 3 − level of SB was significantly higher than PL ( p < 0.05) both before and after each HIIT; 2) Relative peak power in WAnT was significantly higher in the SB group after 6 weeks ( p < 0.01); 3) Lactate clearance rate and the lactate clearance velocity after 10 min of WAnT were both significantly higher in SB in the post-test (p < 0.01); 4) Heart rate recovery rate at 10 min after WAnT in both SB and PL after 6 weeks were significantly improved (p < 0.01 and p < 0.05, respectively), resulting in no difference between groups on these measures. Conclusions These data suggest that supplementation of HCO 3 − at the level of 0.2 g/kg body mass before HIIT training enhances the effect of HIIT on anaerobic performance, and improves the blood lactate clearance rate and the blood lactate clearance velocity following anaerobic exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.