Recently, interests in detecting hot topics have been significantly growing as it becomes important to find out and analyze meaningful information from the large amount of data which flows in from social network services. Since it deals with a number of random writings that are not confirmed in advance due to the characteristics of SNS, there is a problem that the reliability of the results declines when hot topics are predicted from the writings. To solve such a problem, this paper proposes a high reliable hot topic prediction scheme considering user influences in social networks. The proposed scheme extracts a set of keywords with hot issues instantly through the modified TF-IDF algorithm based on Twitter. It improves the reliability of the results of hot topic prediction by giving weights of user influences to the tweets. To show the superiority of the proposed scheme, we compare it with the existing scheme through performance evaluation. Our experimental results show that our proposed method has improved precision and recall compared to the existing method.■ keyword :|Social Network Services|Twitter|Hot Topics|Prediction|
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.