Multi-branch Networks (MBNs) have been successfully applied to myocardial infarction (MI) diagnosis using 12-lead electrocardiograms. However, most existing MBNs share a fixed architecture. The absence of architecture optimization has become a significant obstacle to a more accurate diagnosis for these MBNs. In this paper, an evolving neural network named EvoMBN is proposed for MI diagnosis. It utilizes a genetic algorithm (GA) to automatically learn the optimal MBN architectures. A novel fixed-length encoding method is proposed to represent each architecture. In addition, the crossover, mutation, selection, and fitness evaluation of the GA are defined to ensure the architecture can be optimized through evolutional iterations. A novel Lead Squeeze and Excitation (LSE) block is designed to summarize features from all the branch networks. It consists of a fully-connected layer and an LSE mechanism that assigns weights to different leads. Five-fold inter-patient cross validation experiments on MI detection and localization are performed using the PTB diagnostic database. Moreover, the model architecture learned from the PTB database is transferred to the PTB-XL database without any changes. Compared with existing studies, our EvoMBN shows superior generalization and the efficiency of its flexible architecture is suitable for auxiliary MI diagnosis in real-world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.