Secure localization has become very important in wireless sensor networks. However, the conventional secure localization algorithms used in wireless sensor networks cannot deal with internal attacks and cannot identify malicious nodes. In this paper, a localization based on trust valuation, which can overcome a various attack types, such as spoofing attacks and Sybil attacks, is presented. The trust valuation is obtained via selection of the property set, which includes estimated distance, localization performance, position information of beacon nodes, and transmission time, and discussion of the threshold in the property set. In addition, the robustness of the proposed model is verified by analysis of attack intensity, localization error, and trust relationship for three typical scenes. The experimental results have shown that the proposed model is superior to the traditional secure localization models in terms of malicious nodes identification and performance improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.