Acute promyelocytic leukemia (APL) is characterized by the accumulation of promyelocytes in bone marrow. More than 95% of patients with this disease belong to typical APL, which express PML-RARA and are sensitive to differentiation induction therapy containing all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), and they exhibit an excellent clinical outcome. Compared to typical APL, variant APL showed quite different aspects, and how to recognize, diagnose, and treat variant APL remained still challenged at present. Herein, we drew the genetic landscape of variant APL according to recent progresses, then discussed how they contributed to generate APL, and further shared our clinical experiences about variant APL treatment. In practice, when APL phenotype was exhibited but PML-RARA and t(15;17) were negative, variant APL needed to be considered, and fusion gene screen as well as RNA-sequencing should be displayed for making the diagnosis as soon as possible. Strikingly, we found that besides of RARA rearrangements, RARB or RARG rearrangements also generated the phenotype of APL. In addition, some MLL rearrangements, NPM1 rearrangements or others could also drove variant APL in absence of RARA/RARB/RARG rearrangements. These results indicated that one great heterogeneity existed in the genetics of variant APL. Among them, only NPM1-RARA, NUMA-RARA, FIP1L1-RARA, IRF2BP2-RARA, and TFG-RARA have been demonstrated to be sensitive to ATRA, so combined chemotherapy rather than differentiation induction therapy was the standard care for variant APL and these patients would benefit from the quick switch between them. If ATRA-sensitive RARA rearrangement was identified, ATRA could be added back for re-induction of differentiation. Through this review, we hoped to provide one integrated view on the genetic landscape of variant APL and helped to remove the barriers for managing this type of disease.
We previously reported that autocrine TNF-α (TNF) is responsible for JNK pathway activation in a subset of acute myeloid leukemia (AML) patient samples, providing a survival/proliferation signaling parallel to NF-κB in AML stem cells (LSCs). In this study, we report that most TNF-expressing AML cells (LCs) also express another pro-inflammatory cytokine, IL1β, which acts in a parallel manner. TNF was produced primarily by LSCs and leukemic progenitors (LPs), whereas IL1β was mainly produced by partially differentiated leukemic blasts (LBs). IL1β also stimulates an NF-κB-independent pro-survival and proliferation signal through activation of the JNK pathway. We determined that co-inhibition of signaling stimulated by both TNF and IL1β synergizes with NF-κB inhibition in eliminating LSCs both ex vivo and in vivo. Our studies show that such treatments are most effective in M4/5 subtypes of AML.
The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-pPten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. STEM CELLS 2016;34:2130-2144
SIGNIFICANCE STATEMENTOur studies presented in this manuscript suggest that in addition to inhibiting the PI3K/Akt/ mTor pathway, Pten maintains the undifferentiated quiescent state of HSCs in the bone marrow niche by an additional mechanism, namely a cell:cell contact inhibiting mechanism accomplished by repressing niche-stimulated Fak and p38 signaling. The cell:cell contact inhibitory function of Pten is regulated by phosphorylation of its c-terminal tail. Inhibition of such phosphorylation might help to maintain HSCs in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.