Multi-version concurrency control (MVCC) is currently the most popular transaction management scheme in modern database management systems (DBMSs). Although MVCC was discovered in the late 1970s, it is used in almost every major relational DBMS released in the last decade. Maintaining multiple versions of data potentially increases parallelism without sacrificing serializability when processing transactions. But scaling MVCC in a multi-core and in-memory setting is non-trivial: when there are a large number of threads running in parallel, the synchronization overhead can outweigh the benefits of multi-versioning. To understand how MVCC perform when processing transactions in modern hardware settings, we conduct an extensive study of the scheme's four key design decisions: concurrency control protocol, version storage, garbage collection, and index management. We implemented state-of-the-art variants of all of these in an in-memory DBMS and evaluated them using OLTP workloads. Our analysis identifies the fundamental bottlenecks of each design choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.